A070885 a(n) = (3/2)*a(n-1) if a(n-1) is even; (3/2)*(a(n-1)+1) if a(n-1) is odd.
1, 3, 6, 9, 15, 24, 36, 54, 81, 123, 186, 279, 420, 630, 945, 1419, 2130, 3195, 4794, 7191, 10788, 16182, 24273, 36411, 54618, 81927, 122892, 184338, 276507, 414762, 622143, 933216, 1399824, 2099736, 3149604, 4724406, 7086609, 10629915
Offset: 1
Keywords
References
- Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, 2002, p. 123.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- B. Chen, R. Chen, J. Guo, S. Lee et al., On Base 3/2 and its Sequences, arXiv:1808.04304 [math.NT], 2018.
- James Tanton, Exploding Dots, Chapter 9
- Eric Weisstein's World of Mathematics, Wolfram Sequences
Crossrefs
The constant K is 2/3*K(3) (see A083286). - Ralf Stephan, May 29 2003
Cf. A003312.
Cf. A081848.
Cf. A205083 (parity of terms).
Programs
-
Haskell
a070885 n = a070885_list !! (n-1) a070885_list = 1 : map (flip (*) 3 . flip div 2 . (+ 1)) a070885_list -- Reinhard Zumkeller, Sep 05 2014
-
Maple
A070885 := proc(n) option remember; if n = 1 then return 1; elif type(procname(n-1),'even') then procname(n-1) ; else procname(n-1)+1 ; end if; %*3/2 ; end proc: seq(A070885(n),n=1..80) ; # R. J. Mathar, Jun 18 2018
-
Mathematica
NestList[If[EvenQ[#],3/2 #,3/2 (#+1)]&,1,40] (* Harvey P. Dale, May 18 2018 *)
-
Python
from itertools import islice def A070885_gen(): # generator of terms a = 1 while True: yield a a += (a+1>>1)+(a&1) A070885_list = list(islice(A070885_gen(),70)) # Chai Wah Wu, Sep 20 2022
Formula
For n > 1, a(n) = 3*A061419(n) = 3*floor(K*(3/2)^n) where K=1.08151366859... - Benoit Cloitre, Aug 18 2002
a(n) = 3*ceiling(a(n-1)/2). - Benoit Cloitre, Apr 25 2003
a(n+1) = a(n) + A081848(n), for n > 1. - Reinhard Zumkeller, Sep 05 2014
Comments