cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A071075 Number of permutations that avoid the generalized pattern 132-4.

Original entry on oeis.org

1, 1, 2, 6, 23, 107, 585, 3671, 25986, 204738, 1776327, 16824237, 172701135, 1909624371, 22626612450, 285982186662, 3840440707485, 54603776221965, 819424594880559, 12942757989763101, 214626518776190178, 3728112755679416898, 67692934780306842501, 1282399636333412178531, 25303124674163685176793
Offset: 0

Views

Author

Sergey Kitaev, May 26 2002

Keywords

Crossrefs

Programs

  • Maple
    A(y) := 1/(1-int(exp(-t^2/2),t=0..y)); B(x) := exp(int(A(y),y=0..x)); series(B(x),x=0,30);
  • Mathematica
    CoefficientList[Series[E^(Integrate[1/(1-Integrate[E^(-t^2/2), {t,0,y}]), {y,0,x}]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 23 2014 *)
  • PARI
    N=66; x='x+O('x^N);
    A=1/(1-intformal(exp(-x^2/2)));
    egf=exp(intformal(A));
    Vec(serlaplace(egf))
    \\ Joerg Arndt, Aug 28 2014

Formula

E.g.f.: exp(int(A(y), y=0..x)), where A(y) = 1/(1 - int(exp(-t^2/2), t=0..y)).
a(n) ~ c * d^n * n! / n^f, where d = 1/A240885 = 1/(sqrt(2)*InverseErf(sqrt(2/Pi))) = 0.7839769312035474991242486548698125357473282..., f = 1.2558142944089303287268746534354522944538722816671534535062816..., c = 0.2242410644782853722452053227678681810005068... . - Vaclav Kotesovec, Aug 23 2014
Let b(n) = A111004(n) = number of permutations of [n] that avoid the consecutive pattern 132. Then a(n) = Sum_{i = 0..n-1} binomial(n-1,i)*b(i)*a(n-1-i) with a(0) = b(0) = 1. [See the recurrence for A_n and B_n in the proof of Theorem 13 in Kitaev's papers.] - Petros Hadjicostas, Nov 01 2019

Extensions

Link and a(11)-a(20) from Andrew Baxter, May 17 2011
Typo in first formula corrected by Vaclav Kotesovec, Aug 23 2014

A071076 Number of permutations that avoid the generalized pattern 123-4.

Original entry on oeis.org

1, 1, 2, 6, 23, 108, 598, 3815, 27532, 221708, 1970251, 19150132, 202064380, 2300071071, 28092017668, 366425723926, 5083645400819, 74745472084176, 1160974832572274, 18995175706664735, 326531476287842760, 5883736110875887560, 110893188848753125475
Offset: 0

Views

Author

Sergey Kitaev, May 26 2002

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(
          `if`(t=1 and o>j, 0, b(u+j-1, o-j, t+1)), j=1..o)+
           add(b(u-j, o+j-1, 0), j=1..u))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 14 2015
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == 1 && o > j, 0, b[u + j - 1, o - j, t + 1]], {j, 1, o}] + Sum[b[u - j, o + j - 1, 0], {j, 1, u}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 01 2016, after Alois P. Heinz *)

Formula

E.g.f.: exp(int(A(y), y=0..x)), where A(y) = (sqrt(3)/2)*exp(y/2)/cos((sqrt(3)/2)*y + Pi/6).
Let b(n) = A049774(n) = number of permutations of [n] that avoid the consecutive pattern 123. Then a(n) = Sum_{i = 0..n-1} binomial(n-1,i)*b(i)*a(n-1-i) with a(0) = b(0) = 1. [See the recurrence for A_n and B_n in the proof of Theorem 13 in Kitaev's papers.] -

Extensions

More terms from Vladeta Jovovic, May 28 2002
Link added by Andrew Baxter, May 17 2011
Typos in formula corrected by Vaclav Kotesovec, Aug 23 2014

A071088 Number of permutations that avoid the generalized pattern 12345-6.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 719, 5022, 40064, 359400, 3580896, 39233867, 468818397, 6067548429, 84551873634, 1262188317534, 20095114167065, 339883289813330, 6086154606429378, 115025120586250896, 2288119443771888504, 47787869441095495395, 1045507132393256095282
Offset: 0

Views

Author

Sergey Kitaev, May 26 2002

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(
          `if`(t=3 and o>j, 0, b(u+j-1, o-j, t+1)), j=1..o)+
           add(b(u-j, o+j-1, 0), j=1..u))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 14 2015
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[If[t == 3 && o > j, 0, b[u+j-1, o-j, t+1]], {j, 1, o}] + Sum[b[u-j, o+j-1, 0], {j, 1, u}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 25] (* Jean-François Alcover, Nov 02 2020, after Alois P. Heinz *)

Formula

E.g.f.: exp(int(A(y), y=0..x)), where A(y) = 1/(Sum_{i>=0} y^{5*i}/(5*i)! - Sum_{i>=0} y^{5*i+1}/(5*i+1)!).
Let b(n) = A177523(n) = number of permutations of [n] that avoid the consecutive pattern 12345. Then a(n) = Sum_{i = 0..n-1} binomial(n-1,i)*b(i)*a(n-1-i) with a(0) = b(0) = 1. [See the recurrence for A_n and B_n in the proof of Theorem 13 in Kitaev's papers.] - Petros Hadjicostas, Nov 01 2019

Extensions

More terms from Vladeta Jovovic, May 28 2002
Showing 1-3 of 3 results.