cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A240885 Decimal expansion of the unique positive solution of Integral_{0..x} exp(-t^2/2) dt = 1.

Original entry on oeis.org

1, 2, 7, 5, 5, 4, 7, 7, 3, 6, 4, 1, 7, 2, 1, 5, 3, 7, 8, 8, 0, 1, 3, 4, 3, 1, 9, 7, 4, 6, 7, 8, 5, 4, 7, 9, 0, 7, 3, 0, 7, 8, 1, 4, 3, 7, 4, 9, 4, 7, 2, 6, 1, 4, 3, 9, 4, 4, 8, 7, 3, 2, 6, 4, 6, 3, 1, 6, 4, 6, 9, 2, 5, 6, 4, 3, 0, 0, 8, 6, 4, 1, 6, 0, 4, 6, 2, 5, 2, 7, 5, 9, 5, 4, 2, 9, 3, 4, 5, 6
Offset: 1

Views

Author

Jean-François Alcover, Apr 14 2014

Keywords

Examples

			1.2755477364172...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[2]*InverseErf[Sqrt[2/Pi]], 10, 100] // First
  • PARI
    a=sqrt(Pi/2); b=a-1; c=1/sqrt(2); solve(x=1,2, a*erfc(c*x)-b) \\ Charles R Greathouse IV, Sep 02 2024

Formula

Solution to sqrt(Pi/2)*erf(x/sqrt(2)) = 1.

A071076 Number of permutations that avoid the generalized pattern 123-4.

Original entry on oeis.org

1, 1, 2, 6, 23, 108, 598, 3815, 27532, 221708, 1970251, 19150132, 202064380, 2300071071, 28092017668, 366425723926, 5083645400819, 74745472084176, 1160974832572274, 18995175706664735, 326531476287842760, 5883736110875887560, 110893188848753125475
Offset: 0

Views

Author

Sergey Kitaev, May 26 2002

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(
          `if`(t=1 and o>j, 0, b(u+j-1, o-j, t+1)), j=1..o)+
           add(b(u-j, o+j-1, 0), j=1..u))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 14 2015
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == 1 && o > j, 0, b[u + j - 1, o - j, t + 1]], {j, 1, o}] + Sum[b[u - j, o + j - 1, 0], {j, 1, u}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 01 2016, after Alois P. Heinz *)

Formula

E.g.f.: exp(int(A(y), y=0..x)), where A(y) = (sqrt(3)/2)*exp(y/2)/cos((sqrt(3)/2)*y + Pi/6).
Let b(n) = A049774(n) = number of permutations of [n] that avoid the consecutive pattern 123. Then a(n) = Sum_{i = 0..n-1} binomial(n-1,i)*b(i)*a(n-1-i) with a(0) = b(0) = 1. [See the recurrence for A_n and B_n in the proof of Theorem 13 in Kitaev's papers.] -

Extensions

More terms from Vladeta Jovovic, May 28 2002
Link added by Andrew Baxter, May 17 2011
Typos in formula corrected by Vaclav Kotesovec, Aug 23 2014

A071077 Number of permutations that avoid the generalized pattern 1234-5.

Original entry on oeis.org

1, 1, 2, 6, 24, 119, 705, 4857, 38142, 336291, 3289057, 35337067, 413698248, 5241768017, 71465060725, 1043175024243, 16231998346794, 268207096127991, 4690005160446721, 86528908665043683, 1679764981327051508, 34226671269330933413, 730361830628447403029
Offset: 0

Views

Author

Sergey Kitaev, May 26 2002

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(
          `if`(t=2 and o>j, 0, b(u+j-1, o-j, t+1)), j=1..o)+
           add(b(u-j, o+j-1, 0), j=1..u))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 14 2015
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[If[t == 2 && o>j, 0, b[u+j-1, o-j, t+1]], {j, 1, o}] + Sum[b[u-j, o+j-1, 0], {j, 1, u}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 25] (* Jean-François Alcover, Apr 23 2020, after Alois P. Heinz *)

Formula

E.g.f.: exp(int(A(y), y=0..x)), where A(y) = 1/(Sum_{i>=0} y^{4*i}/(4*i)! - Sum_{i>=0} y^{4*i+1}/(4*i+1)!).
Let b(n) = A117158(n) = number of permutations of [n] that avoid the consecutive pattern 1234. Then a(n) = Sum_{i = 0..n-1} binomial(n-1,i)*b(i)*a(n-1-i) with a(0) = b(0) = 1. [See the recurrence for A_n and B_n in the proof of Theorem 13 in Kitaev's papers.] - Petros Hadjicostas, Oct 31 2019

Extensions

Corrected and extended by Vladeta Jovovic, May 28 2002

A071088 Number of permutations that avoid the generalized pattern 12345-6.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 719, 5022, 40064, 359400, 3580896, 39233867, 468818397, 6067548429, 84551873634, 1262188317534, 20095114167065, 339883289813330, 6086154606429378, 115025120586250896, 2288119443771888504, 47787869441095495395, 1045507132393256095282
Offset: 0

Views

Author

Sergey Kitaev, May 26 2002

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(
          `if`(t=3 and o>j, 0, b(u+j-1, o-j, t+1)), j=1..o)+
           add(b(u-j, o+j-1, 0), j=1..u))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 14 2015
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[If[t == 3 && o > j, 0, b[u+j-1, o-j, t+1]], {j, 1, o}] + Sum[b[u-j, o+j-1, 0], {j, 1, u}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 25] (* Jean-François Alcover, Nov 02 2020, after Alois P. Heinz *)

Formula

E.g.f.: exp(int(A(y), y=0..x)), where A(y) = 1/(Sum_{i>=0} y^{5*i}/(5*i)! - Sum_{i>=0} y^{5*i+1}/(5*i+1)!).
Let b(n) = A177523(n) = number of permutations of [n] that avoid the consecutive pattern 12345. Then a(n) = Sum_{i = 0..n-1} binomial(n-1,i)*b(i)*a(n-1-i) with a(0) = b(0) = 1. [See the recurrence for A_n and B_n in the proof of Theorem 13 in Kitaev's papers.] - Petros Hadjicostas, Nov 01 2019

Extensions

More terms from Vladeta Jovovic, May 28 2002

A328504 Number of inversion sequences of length n avoiding the consecutive pattern 010.

Original entry on oeis.org

1, 1, 2, 5, 17, 76, 417, 2701, 20199, 171329, 1624851, 17036586, 195685618, 2443572835, 32959210808, 477542545691, 7396931591165, 121976733648960, 2133460758692093, 39450254899737811, 768950119933799815, 15757352298761474101, 338663233082663363407
Offset: 0

Views

Author

Vaclav Kotesovec and Juan S. Auli, Oct 17 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, j, t) option remember; `if`(n=0, 1, add(
          `if`(i>=j or i<>t, b(n-1, i, j), 0), i=1..n))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 18 2019
  • Mathematica
    b[n_, j_, t_] := b[n, j, t] = If[n == 0, 1, Sum[If[i >= j || i != t, b[n - 1, i, j], 0], {i, 1, n}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 25] (* Jean-François Alcover, Mar 12 2020, after Alois P. Heinz *)

Formula

a(n) ~ n! * c / sqrt(n), where c = 1.410641128930866501817126119... - Vaclav Kotesovec, Oct 19 2019

A328500 Number of inversion sequences of length n avoiding the consecutive pattern 102.

Original entry on oeis.org

1, 1, 2, 6, 22, 96, 492, 2902, 19350, 143918, 1181540, 10614698, 103589738, 1091367634, 12346368424, 149276823258, 1921099070062, 26220186000950, 378308908684300, 5753387612678314, 91988260677198002, 1542570178562361018, 27072325866355742048
Offset: 0

Views

Author

Vaclav Kotesovec and Juan S. Auli, Oct 17 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, j, t) option remember; `if`(n=0, 1, add(
          `if`(i<=j or i>=t, b(n-1, i, j), 0), i=1..n))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 18 2019
  • Mathematica
    b[n_, j_, t_] := b[n, j, t] = If[n == 0, 1, Sum[If[i <= j || i >= t, b[n - 1, i, j], 0], {i, 1, n}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 25] (* Jean-François Alcover, Mar 01 2020, after Alois P. Heinz *)

Formula

a(n) ~ n! * c * d^n * n^alfa, where d = 1/A240885 = 1/(sqrt(2) * InverseErf(sqrt(2/Pi))), alfa = 0.294868853646259565..., c = 2.22826071050847602... - Vaclav Kotesovec, Oct 19 2019

A328501 Number of inversion sequences of length n avoiding the consecutive pattern 201.

Original entry on oeis.org

1, 1, 2, 6, 24, 118, 684, 4548, 34036, 282696, 2577936, 25589100, 274539856, 3164909164, 39006958856, 511759353776, 7120140764224, 104703385864788, 1622530610142744, 26425922582118000, 451264786489454168, 8062192403534869432, 150395837509736576208
Offset: 0

Views

Author

Vaclav Kotesovec and Juan S. Auli, Oct 17 2019

Keywords

Crossrefs

Formula

a(n) ~ n! * c * d^n * n^alfa, where d = 1/A240885 = 1/(sqrt(2) * InverseErf(sqrt(2/Pi))) = 0.783976931203547499124248654869812535747328200022..., alfa = 1.9218908815253415257398764962146978742409244378248756048362586275529..., c = 0.05831456121798260255226478044037424484656774525125436523149657... - Vaclav Kotesovec, Oct 18 2019

A328507 Number of inversion sequences of length n avoiding the consecutive pattern 101.

Original entry on oeis.org

1, 1, 2, 6, 23, 109, 619, 4113, 31352, 269841, 2589026, 27404677, 317265161, 3988181568, 54099618419, 787705115000, 12253696410675, 202831037178017, 3559585021719875, 66018657264425355, 1290284788431977106, 26505045303122642171, 570918508059059670322
Offset: 0

Views

Author

Vaclav Kotesovec and Juan S. Auli, Oct 17 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, j, t) option remember; `if`(n=0, 1, add(
          `if`(i<=j or i<>t, b(n-1, i, j), 0), i=1..n))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 18 2019
  • Mathematica
    b[n_, j_, t_] := b[n, j, t] = If[n == 0, 1, Sum[If[i <= j || i != t, b[n-1, i, j], 0], {i, 1, n}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 25] (* Jean-François Alcover, Mar 19 2020, after Alois P. Heinz *)

Formula

a(n) ~ n! * c / sqrt(n), where c = 2.48988835987151440021135203237... - Vaclav Kotesovec, Oct 19 2019
Showing 1-8 of 8 results.