A071174 Numbers whose sum of exponents is equal to the product of prime factors.
4, 27, 96, 144, 216, 324, 486, 2560, 3125, 6400, 16000, 40000, 57344, 100000, 200704, 250000, 625000, 702464, 823543, 1562500, 2458624, 3906250, 8605184, 23068672, 23914845, 30118144, 39858075, 66430125, 105413504, 110716875, 126877696, 184528125, 307546875, 368947264, 436207616
Offset: 1
Examples
57344 = 2^13 * 7^1 and 2*7 = 13+1 hence 57344 is in the sequence. 16000 = 2^7 * 5^3 and 2*5 = 7+3 hence 16000 is in the sequence.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10760 (terms <= 10^52)
Programs
-
Mathematica
q[n_] := Times @@(f = FactorInteger[n])[[;; , 1]] == Total[f[[;; , 2]]]; Select[Range[2, 10^5], q] (* Amiram Eldar, Jun 24 2022 *)
-
PARI
for(n=1,200000,o=omega(n); if(prod(i=1,o, component(component(factor(n),1),i))==sum(i=1,o, component(component(factor(n),2),i)),print1(n,",")))
-
Python
from math import prod from sympy import factorint def ok(n): f = factorint(n); return sum(f[p] for p in f)==prod(p for p in f) print(list(filter(ok, range(10**6)))) # Michael S. Branicky, Apr 27 2021
Extensions
More terms from Klaus Brockhaus, Jun 12 2002
More terms from Vladeta Jovovic, Jun 13 2002
Comments