cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071174 Numbers whose sum of exponents is equal to the product of prime factors.

Original entry on oeis.org

4, 27, 96, 144, 216, 324, 486, 2560, 3125, 6400, 16000, 40000, 57344, 100000, 200704, 250000, 625000, 702464, 823543, 1562500, 2458624, 3906250, 8605184, 23068672, 23914845, 30118144, 39858075, 66430125, 105413504, 110716875, 126877696, 184528125, 307546875, 368947264, 436207616
Offset: 1

Views

Author

Benoit Cloitre, Jun 10 2002

Keywords

Comments

Number k such that A001222(k) = A007947(k). - Amiram Eldar, Jun 24 2022

Examples

			57344 = 2^13 * 7^1 and 2*7 = 13+1 hence 57344 is in the sequence.
16000 = 2^7 * 5^3 and 2*5 = 7+3 hence 16000 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Times @@(f = FactorInteger[n])[[;; , 1]] == Total[f[[;; , 2]]]; Select[Range[2, 10^5], q] (* Amiram Eldar, Jun 24 2022 *)
  • PARI
    for(n=1,200000,o=omega(n); if(prod(i=1,o, component(component(factor(n),1),i))==sum(i=1,o, component(component(factor(n),2),i)),print1(n,",")))
    
  • Python
    from math import prod
    from sympy import factorint
    def ok(n): f = factorint(n); return sum(f[p] for p in f)==prod(p for p in f)
    print(list(filter(ok, range(10**6)))) # Michael S. Branicky, Apr 27 2021

Extensions

More terms from Klaus Brockhaus, Jun 12 2002
More terms from Vladeta Jovovic, Jun 13 2002