A071176 Smallest k such that the concatenation of n and k is a square (decimal notation).
6, 5, 6, 9, 29, 4, 29, 1, 61, 0, 56, 1, 69, 4, 21, 9, 64, 49, 6, 25, 16, 5, 104, 336, 6, 244, 225, 9, 16, 25, 36, 4, 64, 81, 344, 1, 21, 44, 69, 0, 209, 25, 56, 1, 369, 24, 61, 4, 284, 41, 84, 9, 29, 76, 225, 25, 6, 564, 29, 84, 504, 5, 504
Offset: 1
Examples
a(5) = 29 as 529 = 23^2 and 5'i is nonsquare for i<29, A071177(5)=23.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.List (findIndex) import Data.Maybe (fromJust) a071176 n = fromJust $ findIndex (== 1) $ map (a010052 . read . (show n ++) . show) [0..] -- Reinhard Zumkeller, Aug 09 2011
-
Mathematica
nksq[n_]:=Module[{idn=IntegerDigits[n],k=0},While[!IntegerQ[Sqrt[ FromDigits[Join[ idn,IntegerDigits[k]]]]],k++];k]; Array[nksq,70] (* Harvey P. Dale, Sep 28 2012 *)
-
PARI
a(n)={if(issquare(10*n), 0, my(m=n, b=1); while(1, m*=10; my(r=(sqrtint(m+b-1)+1)^2-m); b*=10; if(rAndrew Howroyd, Jan 13 2023
-
Python
from math import isqrt from sympy.ntheory.primetest import is_square def A071176(n): m = 10*n if is_square(m): return 0 a = 1 while (k:=(isqrt(a*(m+1)-1)+1)**2-m*a)>=10*a: a *= 10 return k # Chai Wah Wu, Feb 15 2023
Comments