cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071178 Exponent of the largest prime factor of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Benoit Cloitre, Jun 10 2002

Keywords

Comments

a(n) = the multiplicity of the largest part in the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(18) = 2; indeed, the partition having Heinz number 18 = 2*3*3 is [1,2,2]. - Emeric Deutsch, Jun 04 2015

Crossrefs

Programs

  • Haskell
    a071178 = last . a124010_row -- Reinhard Zumkeller, Aug 27 2011
    
  • Maple
    with(numtheory): with(padic):
    a:= n-> `if`(n=1, 0, ordp(n, max(factorset(n)[]))):
    seq(a(n), n=1..120);  # Alois P. Heinz, Jun 04 2015
  • Mathematica
    a[n_] := FactorInteger[n] // Last // Last; Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Jun 12 2015 *)
    Join[{0},Table[FactorInteger[n][[-1,2]],{n,2,120}]] (* Harvey P. Dale, Aug 02 2025 *)
  • PARI
    a(n) = if(n == 1, 0, my(e = factor(n)[, 2]); e[#e]); \\ Amiram Eldar, Oct 02 2024
  • Python
    from sympy import factorint
    def A071178(n): return max(factorint(n).items())[1] if n>1 else 0 # Chai Wah Wu, Oct 10 2023
    

Formula

a(n) = A124010(n, A001221(n)); A053585(n) = A006530(n)^a(n). - Reinhard Zumkeller, Aug 27 2011
a(n) = A067255(n, A001222(n)). - Reinhard Zumkeller, Jun 11 2013
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 (since the asymptotic density of A070003 is 0). - Amiram Eldar, Oct 02 2024