A071207 Triangular array T(n,k) read by rows, giving number of rooted trees on the vertex set {1..n+1} where k children of the root have a label smaller than the label of the root.
1, 1, 1, 4, 4, 1, 27, 27, 9, 1, 256, 256, 96, 16, 1, 3125, 3125, 1250, 250, 25, 1, 46656, 46656, 19440, 4320, 540, 36, 1, 823543, 823543, 352947, 84035, 12005, 1029, 49, 1, 16777216, 16777216, 7340032, 1835008, 286720, 28672, 1792, 64, 1, 387420489
Offset: 0
Examples
1 1 1 4 4 1 27 27 9 1 256 256 96 16 1 3125 3125 1250 250 25 1 46656 46656 19440 4320 540 36 1
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- C. Chauve, S. Dulucq and O. Guibert, Enumeration of some labeled trees, Proceedings of FPSAC/SFCA 2000 (Moscow), Springer, pp. 146-157.
- Alan D. Sokal, A remark on the enumeration of rooted labeled trees, arXiv:1910.14519 [math.CO], 2019 and Discrete Math. 343, 111865 (2020).
Programs
-
Maple
T:= (n, k)-> binomial(n, k)*n^(n-k): seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
Prepend[Flatten[ Table[Table[Binomial[n, k] n^(n - k), {k, 0, n}], {n, 1, 8}]], 1] (* Geoffrey Critzer, Jan 08 2012 *)
-
PARI
T(n,k)=if(k<0 || k>n,0,binomial(n,k)*n^(n-k))
-
PARI
/* Transforms rows into diagonals in the iterations of x/(1-x): */ {T(n, k)=local(F=x, M, N, P, m=n); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, x/(1-x+x*O(x^(m+2))))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, F=x; for(i=1, r, F=subst(F, x, x/(1-x+x*O(x^(m+2))))); polcoeff(F, c)); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Jan 19 2014
Formula
T(n,k) = binomial(n, k)*n^(n-k).
E.g.f.: (-LambertW(-y)/y)^x/(1+LambertW(-y)). - Vladeta Jovovic
Extensions
Name edited by Alan Sokal, Jul 22 2022
Comments