A071222 Smallest k such that gcd(n,k) = gcd(n+1,k+1).
1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2
Offset: 0
Links
- Clark Kimberling & Antti Karttunen, Table of n, a(n) for n = 0..10001 (Terms up to n=1000 from Kimberling)
Programs
-
Haskell
a071222 n = head [k | k <- [1..], gcd (n + 1) (k + 1) == gcd n k] -- Reinhard Zumkeller, Oct 01 2014
-
Mathematica
sgcd[n_]:=Module[{k=1},While[GCD[n,k]!=GCD[n+1,k+1],k++];k]; Array[sgcd,110] (* Harvey P. Dale, Jul 13 2012 *)
-
PARI
for(n=1,140,s=1; while(gcd(s,n)
-
Scheme
(define (A071222 n) (let loop ((k 1)) (cond ((= (gcd n k) (gcd (+ n 1) (+ k 1))) k) (else (loop (+ 1 k)))))) ;; Antti Karttunen, Jan 26 2014
Formula
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A249270 - 1. - Amiram Eldar, Jul 26 2022
Extensions
Added a(0)=1. - N. J. A. Sloane, Jan 19 2014
Comments