cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A071252 a(n) = n*(n - 1)*(n^2 + 1)/2.

Original entry on oeis.org

0, 0, 5, 30, 102, 260, 555, 1050, 1820, 2952, 4545, 6710, 9570, 13260, 17927, 23730, 30840, 39440, 49725, 61902, 76190, 92820, 112035, 134090, 159252, 187800, 220025, 256230, 296730, 341852, 391935, 447330, 508400, 575520, 649077, 729470, 817110, 912420
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2002

Keywords

References

  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

Crossrefs

Programs

  • Magma
    [n*(n-1)*(n^2+1)/2: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
    
  • Mathematica
    f[n_] := n (n - 1) (n^2 + 1)/2 (* Or *) f[n_] := Floor[n^5/(n + 1)]/2; Array[f, 38, 0] (* Robert G. Wilson v, Apr 01 2012 *)
  • PARI
    a(n)=n*(n-1)*(n^2+1)/2; \\ Joerg Arndt, Sep 04 2013
    
  • Python
    def a(n): return  n*(n - 1)*(n**2 + 1)/2 # Indranil Ghosh, Apr 05 2017
    
  • SageMath
    def A071252(n): return binomial(n,2)*(1+n^2)
    [A071252(n) for n in range(41)] # G. C. Greubel, Aug 07 2024

Formula

a(n) = floor(n^5/(n+1))/2. - Gary Detlefs, Mar 31 2011
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) n>4, a(0)=0, a(1)=0, a(2)=5, a(3)=30, a(4)=102. - Yosu Yurramendi, Sep 03 2013
G.f.: x^2*(5+5*x+2*x^2)/(1-x)^5. - Joerg Arndt, Sep 04 2013
From Indranil Ghosh, Apr 05 2017: (Start)
a(n) = A002378(n) * A002522(n) / 2.
E.g.f.: exp(x)*x^2*(5 + 5*x + x^2)/2.
(End)
Showing 1-1 of 1 results.