cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A282062 Expansion of (x + Sum_{p prime, k>=1} x^(p^k))^2.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 5, 4, 5, 6, 7, 6, 8, 6, 7, 6, 7, 6, 9, 6, 10, 8, 7, 4, 10, 6, 9, 8, 10, 6, 12, 6, 13, 10, 13, 8, 14, 4, 11, 8, 12, 6, 12, 6, 12, 10, 11, 4, 16, 6, 15, 8, 12, 4, 17, 6, 14, 8, 11, 4, 16, 6, 13, 8, 13, 6, 18, 4, 16, 10, 14, 4, 20, 6, 15, 12, 14, 6, 18, 4, 18, 8, 13, 8, 22, 6, 17, 8, 14, 6, 24, 8, 16, 6, 13, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 05 2017

Keywords

Comments

Number of ways to write n as an ordered sum of two prime powers (1 included).

Examples

			a(8) = 5 because we have  [7, 1], [5, 3], [4, 4], [3, 5] and [1, 7].
		

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(0)..a(N)
    P:= select(isprime, [$2..N]):
    g:= x + add(add(x^(p^k),k=1..floor(log[p](N))),p=P):
    S:= series(g^2,x,N+1):
    seq(coeff(S,x,n),n=0..N); # Robert Israel, Feb 10 2017
  • Mathematica
    nmax = 95; CoefficientList[Series[(x + Sum[Floor[1/PrimeNu[k]] x^k, {k, 2, nmax}])^2, {x, 0, nmax}], x]

Formula

G.f.: (x + Sum_{p prime, k>=1} x^(p^k))^2.

A071331 Numbers having no decomposition into a sum of two prime powers.

Original entry on oeis.org

1, 149, 331, 373, 509, 701, 757, 809, 877, 907, 959, 997, 1019, 1087, 1199, 1207, 1211, 1243, 1259, 1271, 1477, 1529, 1541, 1549, 1589, 1597, 1619, 1657, 1719, 1759, 1777, 1783, 1807, 1829, 1859, 1867, 1927, 1969, 1973, 2171, 2231
Offset: 1

Views

Author

Reinhard Zumkeller, May 19 2002

Keywords

Comments

Luca & Stanica show that this sequence contains infinitely many Fibonacci numbers. In particular, there is some N such that for all n > N, Fibonacci(1807873 + 3543120*n) is in this sequence. - Charles R Greathouse IV, Jul 06 2011
Chen shows that there are five consecutive odd numbers M-8, M-6, M-4, M-2, M, for which all are members of the sequence. Such M may be large; Chen shows that it is less than 2^(2^253000). In fact, there exists an arithmetic progression of such M, and thus they have positive density. - Charles R Greathouse IV, Jul 06 2011

Crossrefs

A071330(a(n))=0. Cf. A000961, A109829, A014092.

Programs

A341123 Number of partitions of n into 5 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 11, 15, 17, 23, 25, 32, 34, 42, 45, 55, 56, 68, 71, 83, 84, 100, 100, 117, 118, 136, 135, 158, 153, 179, 178, 204, 200, 234, 226, 261, 255, 291, 283, 327, 310, 357, 344, 390, 371, 430, 405, 466, 444, 505, 476, 550, 511, 589, 557, 634, 589, 684, 629
Offset: 5

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
        end:
    a:= n-> b(n$2, 5):
    seq(a(n), n=5..64);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = Length[FactorInteger[n]] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
    a[n_] := b[n, n, 5];
    Table[a[n], {n, 5, 64}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)

A341122 Number of partitions of n into 4 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 5, 8, 9, 12, 13, 17, 17, 22, 22, 26, 27, 33, 31, 39, 38, 44, 43, 51, 47, 58, 54, 63, 60, 71, 64, 79, 74, 88, 82, 99, 88, 108, 97, 116, 105, 126, 110, 134, 119, 141, 126, 153, 133, 164, 143, 172, 149, 184, 155, 194, 168, 204, 173, 215, 180, 227, 192, 238
Offset: 4

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
        end:
    a:= n-> b(n$2, 4):
    seq(a(n), n=4..66);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = Length[FactorInteger[n]] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
    a[n_] := b[n, n, 4];
    Table[a[n], {n, 4, 66}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)

A341124 Number of partitions of n into 6 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 12, 17, 20, 27, 31, 41, 45, 56, 63, 77, 83, 101, 108, 128, 136, 160, 168, 196, 204, 236, 245, 281, 288, 331, 340, 387, 395, 450, 457, 519, 525, 594, 598, 677, 678, 763, 764, 855, 851, 957, 949, 1062, 1053, 1177, 1161, 1300, 1276, 1425, 1403, 1564
Offset: 6

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
        end:
    a:= n-> b(n$2, 6):
    seq(a(n), n=6..62);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = Length[FactorInteger[n]] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
    a[n_] := b[n, n, 6];
    Table[a[n], {n, 6, 62}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)

A341132 Number of partitions of n into 2 distinct prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 5, 4, 3, 2, 5, 3, 4, 4, 5, 3, 6, 3, 6, 5, 6, 4, 7, 2, 5, 4, 6, 3, 6, 3, 6, 5, 5, 2, 8, 3, 7, 4, 6, 2, 8, 3, 7, 4, 5, 2, 8, 3, 6, 4, 6, 3, 9, 2, 8, 5, 7, 2, 10, 3, 7, 6, 7, 3, 9, 2, 9, 4, 6, 4, 11, 3, 8, 4, 7, 3, 12
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i-1), t-1), 0)))
        end:
    a:= n-> b(n$2, 2):
    seq(a(n), n=3..90);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = PrimeNu[n] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i - 1], t - 1], 0]]];
    a[n_] := b[n, n, 2];
    Table[a[n], {n, 3, 90}] (* Jean-François Alcover, Jul 13 2021, after Alois P. Heinz *)

A341112 Number of partitions of n into 3 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 6, 6, 8, 8, 10, 9, 12, 10, 13, 12, 15, 13, 17, 15, 18, 15, 19, 16, 21, 17, 23, 18, 24, 19, 27, 23, 30, 24, 32, 25, 32, 26, 34, 26, 36, 26, 36, 28, 38, 28, 40, 30, 42, 32, 43, 30, 45, 32, 47, 35, 49, 30, 50, 35, 51, 36, 53, 35, 55, 37, 54, 40, 57, 36, 61, 40, 61
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
        end:
    a:= n-> b(n$2, 3):
    seq(a(n), n=3..75);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = Length[FactorInteger[n]] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
    a[n_] := b[n, n, 3];
    Table[a[n], {n, 3, 75}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)

A341125 Number of partitions of n into 7 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 13, 18, 22, 30, 35, 47, 54, 68, 78, 97, 107, 132, 146, 173, 190, 225, 242, 285, 305, 352, 377, 434, 456, 525, 553, 627, 659, 748, 778, 881, 916, 1028, 1068, 1197, 1232, 1381, 1421, 1578, 1619, 1801, 1837, 2041, 2079, 2296, 2337, 2583, 2613
Offset: 7

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
        end:
    a:= n-> b(n$2, 7):
    seq(a(n), n=7..60);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = Length[FactorInteger[n]] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
    a[n_] := b[n, n, 7];
    Table[a[n], {n, 7, 60}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)

A341126 Number of partitions of n into 8 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 13, 19, 23, 32, 38, 51, 60, 77, 90, 113, 128, 158, 179, 215, 240, 287, 316, 373, 409, 475, 517, 599, 645, 741, 799, 908, 971, 1104, 1173, 1326, 1408, 1580, 1670, 1874, 1967, 2198, 2310, 2563, 2680, 2976, 3097, 3426, 3566, 3926, 4070, 4485
Offset: 8

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
        end:
    a:= n-> b(n$2, 8):
    seq(a(n), n=8..60);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = Length[FactorInteger[n]] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
    a[n_] := b[n, n, 8];
    Table[a[n], {n, 8, 60}] (* Jean-François Alcover, Feb 22 2022, after _Alois P. Heinz *)

A341127 Number of partitions of n into 9 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 13, 19, 24, 33, 40, 54, 64, 83, 99, 125, 144, 180, 206, 250, 284, 341, 383, 455, 506, 593, 656, 762, 835, 965, 1054, 1206, 1309, 1491, 1610, 1825, 1964, 2213, 2374, 2664, 2843, 3179, 3387, 3769, 3998, 4440, 4695, 5194, 5480, 6043, 6357
Offset: 9

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
        end:
    a:= n-> b(n$2, 9):
    seq(a(n), n=9..60);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = Length[FactorInteger[n]] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
    a[n_] := b[n, n, 9];
    Table[a[n], {n, 9, 60}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)
Showing 1-10 of 22 results. Next