A071379 a(n) = (1/e) * Sum_{k>=0} ((k+4)!/k!)^(n-1)/k!.
1, 1, 209, 163121, 326922081, 1346634725665, 9939316337679281, 119802044788535500753, 2205421644124274191535553, 58945667435045762187763602753, 2198513228897522394476415669503377, 110833342180980170285766876408530089329
Offset: 0
Keywords
Links
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- K. A. Penson, P. Blasiak, A. Horzela, A. I. Solomon and G. H. E. Duchamp, Laguerre-type derivatives: Dobinski relations and combinatorial identities, J. Math. Phys. 50, 083512 (2009).
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
Crossrefs
Programs
-
Maple
A071379 := proc(n) local r,s,i; if n=0 then 1 else r := [seq(5,i=1..n-1)]; s := [seq(1,i=1..n-1)]; exp(-x)*24^(n-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end: seq(A071379(n),n=0..10); # Peter Luschny, Mar 30 2011
-
Mathematica
a[n_] := Sum[FactorialPower[k, 4]^n/k!, {k, 4, Infinity}]/E; a[0] = 1; Array[a, 12, 0] (* Jean-François Alcover, Sep 01 2016 *)
-
PARI
default(realprecision, 500); for(n=0, 20, print1(if(n==0, 1, round(exp(-1)*sum(k=0, 500, ((k+4)!/k!)^(n-1)/k!))), ", ")) \\ G. C. Greubel, May 15 2018
Formula
a(n) = (1/e)*Sum_{k>=4} fallfac(k, 4)^n / k!, n >= 1, with fallfac(n, m) := A008279(n, m) (falling factorials). (From eq.(26) with r=4 of the Schork reference.)
E.g.f. with a(0) := 1: (1/e)*(Sum_{k>=4} e^(fallfac(k, 4)*x)/k! + 8/3). From top of p. 4656 with r=4 of the Schork reference.
Extensions
a(0)=1 prepended by Alois P. Heinz, Aug 01 2016
If it is proved that A283153 and A071379 are the same, then the entries should be merged and A283153 recycled. - N. J. A. Sloane, Mar 06 2017
Comments