A071383 Squared radii of the circles around (0,0) that contain record numbers of lattice points.
0, 1, 5, 25, 65, 325, 1105, 4225, 5525, 27625, 71825, 138125, 160225, 801125, 2082925, 4005625, 5928325, 29641625, 77068225, 148208125, 243061325, 1215306625, 3159797225, 6076533125, 12882250225, 53716552825, 64411251125
Offset: 1
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 1..425 (first 97 terms from Ray Chandler, terms 98-365 from Amiram Eldar)
- James Buddenhagen, Circle with 3 lattice points, thread in sci.math (May 2002)
- Hugo Pfoertner, Construction of the sequences A071383, A071384, A071385
Crossrefs
Programs
-
PARI
my(v=list(10^15), rec=0); print1(0, ", "); for(n=1, #v, if(numdiv(v[n])>rec, rec=numdiv(v[n]); print1(v[n], ", "))) \\ Jianing Song, May 20 2021, see program for A054994
-
Python
from math import prod from sympy import isprime primes_congruent_1_mod_4 = [5] def prime_4k_plus_1(i): # the i-th prime that is congruent to 1 mod 4 while i>=len(primes_congruent_1_mod_4): # generate primes on demand n = primes_congruent_1_mod_4[-1]+4 while not isprime(n): n += 4 primes_congruent_1_mod_4.append(n) return primes_congruent_1_mod_4[i] def generate_A054994(): TO_DO = {(1,())} while True: radius, exponents = min(TO_DO) yield radius, exponents TO_DO.remove((radius, exponents)) TO_DO.update(successors(radius,exponents)) def successors(r,exponents): for i,e in enumerate(exponents): if i==0 or exponents[i-1]>e: yield (r*prime_4k_plus_1(i), exponents[:i]+(e+1,)+exponents[i+1:]) if exponents==() or exponents[-1]>0: yield (r*prime_4k_plus_1(len(exponents)), exponents+(1,)) n,record,radius=1,1,0 print(radius, end="") # or record, for A071385 for radius,expo in generate_A054994(): num_points = 4*prod((e+1) for e in expo) if num_points>record: record = num_points n += 1 print (",", radius, end="") # or record, for A071385 if n==27: break print() # Günter Rote, Sep 12 2023
Formula
For n>1 we have 1 < a(n+1)/a(n) <= 5, since one can multiply the points x+iy for which x^2 + y^2 = N by either 2+i or 2-i to get two new sets of points X+iY for which X^2 + Y^2 = 5N. This strictly increases the number since it is easy to see that the two sets aren't the same. - J. H. Conway, Jun 04 2002
lim n ->infinity Log(a(n))/n = 1. [Conjectured by Benoit Cloitre, proved by J. H. Conway]
Comments