A071562 Numbers n such that the sum of the middle divisors of n (A071090) is not zero.
1, 2, 4, 6, 8, 9, 12, 15, 16, 18, 20, 24, 25, 28, 30, 32, 35, 36, 40, 42, 45, 48, 49, 50, 54, 56, 60, 63, 64, 66, 70, 72, 77, 80, 81, 84, 88, 90, 91, 96, 98, 99, 100, 104, 108, 110, 112, 117, 120, 121, 126, 128, 130, 132, 135, 140, 143, 144, 150, 153, 154, 156, 160
Offset: 1
Keywords
Examples
From _Hartmut F. W. Hoft_, Feb 12 2018: (Start) 63 = 3^2*7 is in the sequence since 7*2^1 > r(63) = 10. 80 = 2^4*5 is in the sequence since 1*2^5 > r(80) = 12. (End)
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Hartmut F. W. Hoft, Proof of property for odd divisors
- H. Maier and G. Tenenbaum, On the set of divisors of an integer, Invent. Math. 76:1 (1984), 121-128.
Crossrefs
Programs
-
Mathematica
f[n_] := Plus @@ Select[ Divisors[n], Sqrt[n/2] <= # < Sqrt[n*2] &]; Select[ Range[175], f[ # ] != 0 &] (* Related to the symmetric representation of sigma *) (* subsequence of odd parts of number k for m <= k <= n *) (* Function a237270[] is defined in A237270 *) (* Using Wilson's Mathematica program (see above) I verified the equality of both for numbers k <= 10000 *) a071562[m_,n_]:=Select[Range[m,n],OddQ[Length[a237270[#]]]&] a071562[1,160] (* data *) (* Hartmut F. W. Hoft, Jun 23 2014 *) (* implementation using the odd divisor property *) evenExp[n_] := First[NestWhile[{#[[1]]+1, #[[2]]/2}&, {0, n}, EvenQ[Last[#]]&]] oddSRQ[n_] := Module[{e=2^evenExp[n], Floor[(Sqrt[8n+1]-1)/2]}, Select[Divisors[n/e], #<=r&&2 e #>r&]!={}] a071562D[m_, n_] := Select[Range[m, n], oddSRQ] a071562D[1, 160] (* data *) (* Hartmut F. W. Hoft, Feb 12 2018 *)
-
PARI
is(n)=fordiv(n,d, if(d^2>=n/2 && d^2<2*n, return(1))); 0 \\ Charles R Greathouse IV, Aug 01 2016
-
PARI
is(n,f=factor(n))=my(t=(n+1)\2); fordiv(f,d, if(d^2>=t, return(d^2<2*n))); 0 \\ Charles R Greathouse IV, Jan 22 2018
-
PARI
list(lim)=my(v=List(),t); forfactored(n=1,lim\1, t=(n[1]+1)\2; fordiv(n[2],d, if(d^2>=t, if(d^2<2*n[1], listput(v,n[1])); break))); Vec(v) \\ Charles R Greathouse IV, Jan 22 2018
-
PARI
/* functional code associated to the A129912 comment above */ for(j5=5, length(A129912), a=Mat(); a=factor(A129912[j5]); sum2=0; for(i5=1, length(a[,2]), sum2=sum2+a[i5,2]); listput(final,length(a[,1])*sum2)); v=Set(final); \\ Bill McEachen, Jan 25 2018
Comments