cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A350441 Numbers m such that 4^m reversed is prime.

Original entry on oeis.org

2, 5, 12, 35, 75, 182, 828, 1002, 1063, 2168, 6345, 6920, 10054, 14444, 51465
Offset: 1

Views

Author

Mohammed Yaseen, Dec 31 2021

Keywords

Comments

From Bernard Schott, Jan 30 2022: (Start)
If m is a term, then u = 2*m is a term of A057708, because 4^m = 2^(2*m). In fact, terms of this sequence here are half the even terms of A057708.
If m is a term that is multiple of 3, then k = 2*m/3 is a term of A350442, because 4^m = 8^(2m/3). First examples: m = 12, 75, 828, 1002, 6345, 51465, ... and corresponding k = 8, 50, 552, 668, 4230, 34310, ... (End)

Crossrefs

Cf. Numbers m such that k^m reversed is prime: A057708 (k=2), this sequence (k=4), A058993 (k=5), A058994 (k=7), A350442 (k=8), A058995 (k=13).

Programs

  • Mathematica
    Select[Range[2200], PrimeQ[IntegerReverse[4^#]] &] (* Amiram Eldar, Dec 31 2021 *)
  • PARI
    isok(m) = isprime(fromdigits(Vecrev(digits(4^m))))
    
  • Python
    from sympy import isprime
    m = 4
    for n in range (1, 2000):
        if isprime(int(str(m)[::-1])):
            print(n)
        m *= 4

Extensions

a(11)-a(15) from Amiram Eldar, Dec 31 2021

A071586 Powers of 8 written backwards.

Original entry on oeis.org

1, 8, 46, 215, 6904, 86723, 441262, 2517902, 61277761, 827712431, 4281473701, 2954399858, 63767491786, 888318557945, 4011156408934, 23888027348153, 656017679474182, 8425863189971522, 48918490589341081, 278558570881511441
Offset: 0

Views

Author

Benoit Cloitre, Jun 01 2002

Keywords

Crossrefs

Programs

  • PARI
    for(i=1,50,n=8^i; s=ceil(log(n)/log(10)); print1(sum(i=0,s,10^(s-i-1)*(floor(n/10^i)-10*floor(n/10^(i+1)))),","))

A071588 Powers of 6 written backwards.

Original entry on oeis.org

1, 6, 63, 612, 6921, 6777, 65664, 639972, 6169761, 69677001, 67166406, 650797263, 6332876712, 61049606031, 69046146387, 675489481074, 6547099011282, 63744495662961, 614866659955101, 694010047953906, 6792600448516563
Offset: 0

Views

Author

Benoit Cloitre, Jun 01 2002

Keywords

Crossrefs

Programs

  • Mathematica
    FromDigits[Reverse[IntegerDigits[#]]]&/@(6^Range[0,30]) (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    for(i=1,50,n=5^i; s=ceil(log(n)/log(10)); print1(sum(i=0,s,10^(s-i-1)*(floor(n/10^i)-10*floor(n/10^(i+1)))),","))

Formula

a(n) = A004086(A000400(n)).
Showing 1-3 of 3 results.