A071607 Number of strong complete mappings of the cyclic group Z_{2n+1}.
1, 0, 2, 4, 0, 8, 348, 0, 8276, 43184, 0, 5602176, 78309000, 0, 20893691564, 432417667152, 0
Offset: 0
Examples
f(x)=2x in (Z_7,+) is a strong complete mapping of Z_7 since f(0)=0 and both f(x)-x (=x) and f(x)+x (=3x) are permutations of Z_7. From _Eduard I. Vatutin_, Jan 25 2022: (Start) Example of cyclic diagonal Latin square of order 13: . 0 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 0 1 (d=2) 4 5 6 7 8 9 10 11 12 0 1 2 3 (d=4) 6 7 8 9 10 11 12 0 1 2 3 4 5 (d=6) 8 9 10 11 12 0 1 2 3 4 5 6 7 (d=8) 10 11 12 0 1 2 3 4 5 6 7 8 9 (d=10) 12 0 1 2 3 4 5 6 7 8 9 10 11 (d=12) 1 2 3 4 5 6 7 8 9 10 11 12 0 (d=1) 3 4 5 6 7 8 9 10 11 12 0 1 2 (d=3) 5 6 7 8 9 10 11 12 0 1 2 3 4 (d=5) 7 8 9 10 11 12 0 1 2 3 4 5 6 (d=7) 9 10 11 12 0 1 2 3 4 5 6 7 8 (d=9) 11 12 0 1 2 3 4 5 6 7 8 9 10 (d=11) . Example of horizontally semicyclic diagonal Latin square of order 13: . 0 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 0 1 (d=2) 4 5 6 7 8 9 10 11 12 0 1 2 3 (d=4) 9 10 11 12 0 1 2 3 4 5 6 7 8 (d=9) 7 8 9 10 11 12 0 1 2 3 4 5 6 (d=7) 12 0 1 2 3 4 5 6 7 8 9 10 11 (d=12) 3 4 5 6 7 8 9 10 11 12 0 1 2 (d=3) 11 12 0 1 2 3 4 5 6 7 8 9 10 (d=11) 6 7 8 9 10 11 12 0 1 2 3 4 5 (d=6) 1 2 3 4 5 6 7 8 9 10 11 12 0 (d=1) 5 6 7 8 9 10 11 12 0 1 2 3 4 (d=5) 10 11 12 0 1 2 3 4 5 6 7 8 9 (d=10) 8 9 10 11 12 0 1 2 3 4 5 6 7 (d=8) (End) From _Eduard I. Vatutin_, Apr 09 2024: (Start) Example of N-queens problem on toroidal board, N=2*2+1=5, a(2)=2, given by knight with (+1,+2) and (+1,+3) movement parameters starting from top left corner: . +-----------+ +-----------+ | Q . . . . | | Q . . . . | | . . Q . . | | . . . Q . | | . . . . Q | | . Q . . . | | . Q . . . | | . . . . Q | | . . . Q . | | . . Q . . | +-----------+ +-----------+ . Example of N-queens problem on toroidal board, N=2*3+1=7, a(3)=4, given by knight with (+1,+2), (+1,+3), (+1,+4), (+1,+5) movement parameters starting from top left corner: . +---------------+ +---------------+ +---------------+ +---------------+ | Q . . . . . . | | Q . . . . . . | | Q . . . . . . | | Q . . . . . . | | . . Q . . . . | | . . . Q . . . | | . . . . Q . . | | . . . . . Q . | | . . . . Q . . | | . . . . . . Q | | . Q . . . . . | | . . . Q . . . | | . . . . . . Q | | . . Q . . . . | | . . . . . Q . | | . Q . . . . . | | . Q . . . . . | | . . . . . Q . | | . . Q . . . . | | . . . . . . Q | | . . . Q . . . | | . Q . . . . . | | . . . . . . Q | | . . . . Q . . | | . . . . . Q . | | . . . . Q . . | | . . . Q . . . | | . . Q . . . . | +---------------+ +---------------+ +---------------+ +---------------+ (End)
References
- Anthony B. Evans,"Orthomorphism Graphs of Groups", vol. 1535 of Lecture Notes in Mathematics, Springer-Verlag, 1991.
- Y. P. Shieh, J. Hsiang and D. F. Hsu, "On the enumeration of Abelian k-complete mappings", vol. 144 of Congressus Numerantium, 2000, pp. 67-88.
Links
- Jieh Hsiang, Yuh Pyng Shieh, and Yao Chiang Chen, Cyclic complete mappings counting problems, in PaPS: Problems and Problem Sets for ATP Workshop in conjunction with CADE-18 and FLoC 2002.
- Jieh Hsiang, YuhPyng Shieh, and YaoChiang Chen, Cyclic Complete Mappings Counting Problems, National Taiwan University 2014/8/21.
- D. Novakovic, Computation of the number of complete mappings for permutations, Cybernetics & System Analysis, No. 2, v. 36 (2000), pp. 244-247.
- I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Amer. Math. Monthly, 101 (1994), pp. 629-639.
- Eduard I. Vatutin, About the horizontally and vertically semicyclic diagonal Latin squares enumeration (in Russian).
- Eduard I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- Index entries for sequences related to Latin squares and rectangles.
Formula
a(n) = A007705(n) / (2*n+1).
a(n) = A342990(n) / (2*n+1)!. - Eduard I. Vatutin, Mar 10 2022
a(n) = A051906(2*n+1) / (2*n+1). - Eduard I. Vatutin, Apr 09 2024
Extensions
a(15)-a(16) added using A007705 by Andrew Howroyd, May 07 2021
Comments