A071620 Integer lengths of the Champernowne primes (concatenation of first a(n) entries (digits) of A033307 is prime).
10, 14, 24, 235, 2804, 4347, 37735
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Champernowne Constant Digits
- Eric Weisstein's World of Mathematics, Consecutive Number Sequences
- Eric Weisstein's World of Mathematics, Constant Primes
- Eric Weisstein's World of Mathematics, Integer Sequence Primes
- Eric Weisstein's World of Mathematics, Smarandache Prime
Crossrefs
Programs
-
Mathematica
f[0] = 0; f[n_Integer] := 10^(Floor[Log[10, n]] + 1)*f[n - 1] + n; Do[If[PrimeQ[FromDigits[Take[IntegerDigits[f[n]], n]]], Print[n]], {n, 1, 3000}] Cases[FromDigits /@ Rest[FoldList[Append, {}, RealDigits[N[ChampernowneNumber[], 1000]][[1]]]], p_?PrimeQ :> IntegerLength[p]] (* Eric W. Weisstein, Nov 04 2015 *)
-
Python
from itertools import count, islice from sympy import isprime def A071620_gen(): # generator of terms c, l = 0, 0 for n in count(1): for d in str(n): c = 10*c+int(d) l += 1 if isprime(c): yield l A071620_list = list(islice(A071620_gen(),5)) # Chai Wah Wu, Feb 27 2023
Extensions
Edited by Charles R Greathouse IV, Apr 28 2010
a(6) = 4347 from Eric W. Weisstein, Jul 14 2013
a(7) = 37735 from Eric W. Weisstein, Jul 15 2013
Comments