A071724 a(n) = 3*binomial(2n, n-1)/(n+2), n > 0, with a(0)=1.
1, 1, 3, 9, 28, 90, 297, 1001, 3432, 11934, 41990, 149226, 534888, 1931540, 7020405, 25662825, 94287120, 347993910, 1289624490, 4796857230, 17902146600, 67016296620, 251577050010, 946844533674, 3572042254128, 13505406670700
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Joerg Arndt, The a(4)=28 Young tableaux of shape [5, 3].
- FindStat, St000384: The maximal part of the shifted composition of an integer partition.
- Spencer J. Franks, Pamela E. Harris, Kimberly Harry, Jan Kretschmann, and Megan Vance, Counting Parking Sequences and Parking Assortments Through Permutations, arXiv:2301.10830 [math.CO], 2023.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 21.
- Zhicong Lin, David G.L. Wang, and Tongyuan Zhao, A decomposition of ballot permutations, pattern avoidance and Gessel walks, arXiv:2103.04599 [math.CO], 2021.
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016.
- Gus Wiseman, Young diagrams of all integer partitions fitting in a triangular partition of length n but not of length n - 1, n = 1...4.
Crossrefs
Programs
-
Magma
[1] cat [3*Binomial(2*n,n-1)/(n+2): n in [1..29]]; // Vincenzo Librandi, Jul 12 2017
-
Maple
A071724:= n-> 3*binomial(2*n, n-1)/(n+2); 1,seq(A071724(n), n=1..30); # G. C. Greubel, Mar 17 2021
-
Mathematica
Join[{1}, Table[3Binomial[2n, n-1]/(n+2), {n,1,30}]] (* Vincenzo Librandi, Jul 12 2017 *) nn=7; otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; allip=Join@@Table[IntegerPartitions[n],{n,0,nn*(nn+1)/2}]; Table[Length[Select[allip,otbmax[#]==n&]],{n,0,nn}] (* Gus Wiseman, Apr 12 2019 *)
-
PARI
a(n)=if(n<1,n==0,3*(2*n)!/(n+2)!/(n-1)!)
-
Sage
[1]+[3*n*catalan_number(n)/(n+2) for n in (1..30)] # G. C. Greubel, Mar 17 2021
Formula
a(n) = A000245(n), n>0.
G.f.: (C(x)-1)*(1-x)/x = (1 + x^2 * C(x)^3)*C(x), where C(x) is g.f. for Catalan numbers, A000108.
G.f.: ((1-sqrt(1-4*x))/(2*x)-1)*(1-x)/x = A(x) satisfies x^2*A(x)^2 + (x-1)*(2*x-1)*A(x) + (x-1)^2 = 0.
G.f.: 1 + x*C(x)^3, where C(x) is g.f. for the Catalan numbers (A000108). Sequence without the first term is the 3-fold convolution of the Catalan sequence. - Emeric Deutsch, May 30 2004
a(n) is the n-th moment of the function defined on the segment (0, 4) of x axis: a(n) = Integral_{x=0..4} x^n*(-x^(1/2)*cos(3*arcsin((1/2)*x^(1/2)))/Pi) dx, n=0, 1... . - Karol A. Penson, Sep 29 2004
D-finite with recurrence -(n+2)*(n-1)*a(n) + 2*n*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Jul 10 2017
a(n) ~ c*2^(2*n)*n^(-3/2), where c = 3/sqrt(Pi). - Stefano Spezia, Sep 23 2022
From Amiram Eldar, Sep 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 14*(Pi/(3*sqrt(3)) + 1)/9.
Sum_{n>=0} (-1)^n/a(n) = 18/25 - 164*log(phi)/(75*sqrt(5)), where phi is the golden ratio (A001622). (End)
Comments