A071734 a(n) = p(5n+4)/5 where p(k) denotes the k-th partition number.
1, 6, 27, 98, 315, 913, 2462, 6237, 15035, 34705, 77231, 166364, 348326, 710869, 1417900, 2769730, 5308732, 9999185, 18533944, 33845975, 60960273, 108389248, 190410133, 330733733, 568388100, 967054374, 1629808139, 2722189979
Offset: 0
Examples
G.f. = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 913*x^5 + 2462*x^6 + ... G.f. = q^19 + 6*q^43 + 27*q^67 + 98*q^91 + 315*q^115 + 913*q^139 + ...
References
- Berndt and Rankin, "Ramanujan: letters and commentaries", AMS-LMS, History of mathematics, vol. 9, pp. 192-193
- G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940. - From N. J. A. Sloane, Jun 07 2012
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- S. Bouroubi and N. Benyahia Tani, A new identity for complete Bell polynomials based on a formula of Ramanujan, J. Integer Seq. 12 (2009), 09.3.5.
- J. L. Drost, A Shorter Proof of the Ramanujan Congruence Modulo 5, Amer. Math. Monthly 104(10) (1997), 963-964.
- M. D. Hirschhorn, Another Shorter Proof of Ramanujan's Mod 5 Partition Congruence, and More, Amer. Math. Monthly 106(6) (1999), 580-583.
- M. Savic, The Partition Function and Ramanujan's 5k+4 Congruence, Mathematics Exchange 1(1) (2003), 2-4.
- G. N. Watson, Ramanujans Vermutung über Zerfällungszahlen, J. Reine Angew. Math. (Crelle) 179 (1938), 97-128.
- Lasse Winquist, An elementary proof of p(11m+6) == 0 (mod 11), J. Combinatorial Theory 6(1) (1969), 56-59. MR0236136 (38 #4434). - From _N. J. A. Sloane_, Jun 07 2012
Programs
-
Maple
with(combinat): a:= n-> numbpart(5*n+4)/5: seq(a(n), n=0..40); # Alois P. Heinz, Jan 07 2015
-
Mathematica
a[ n_] := PartitionsP[ 5 n + 4] / 5; (* Michael Somos, Jan 07 2015 *) a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ x], {x, 0, 5 n + 4}] / 5; (* Michael Somos, Jan 07 2015 *) nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^5/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( 1 / eta(x + O(x^(5*n + 5))), 5*n + 4) / 5)};
-
PARI
{a(n) = numbpart(5*n + 4) / 5};
-
PARI
a(n)=polcoeff(prod(m=1,n,(1-x^(5*m))^5/(1-x^m +x*O(x^n))^6),n) \\ Paul D. Hanna
Formula
a(n) = (1/5)*A000041(5n+4).
G.f.: Product_{n>=1} (1 - x^(5*n))^5/(1 - x^n)^6 due to Ramanujan's identity. - Paul D. Hanna, May 22 2011
Euler transform of period 5 sequence [ 6, 6, 6, 6, 1, ...]. - Michael Somos, Jan 07 2015
Expansion of q^(-19/24) * eta(q^5)^5 / eta(q)^6 in powers of q. - Michael Somos, Jan 07 2015
a(n) ~ exp(Pi*sqrt(10*n/3)) / (100*sqrt(3)*n). - Vaclav Kotesovec, Nov 28 2016
Comments