A071746 a(n) = p(7n+5)/7 where p(k) denotes the k-th partition number.
1, 11, 70, 348, 1449, 5334, 17822, 55165, 160215, 441105, 1159752, 2929465, 7142275, 16873472, 38749850, 86737678, 189672868, 405991500, 852077072, 1756048833, 3558408287, 7098041203, 13951818365, 27047831797, 51760979985
Offset: 0
References
- Berndt and Rankin, "Ramanujan: letters and commentaries", AMS-LMS, History of mathematics, vol. 9, pp. 192-193.
- G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940. - From N. J. A. Sloane, Jun 07 2012
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- J. L. Drost, A Shorter Proof of the Ramanujan Congruence Modulo 5, Amer. Math. Monthly 104(10) (1997), 963-964.
- Lasse Winquist, An elementary proof of p(11m+6) == 0 (mod 11), J. Combinatorial Theory 6(1) (1969), 56-59. MR0236136 (38 #4434). - From _N. J. A. Sloane_, Jun 07 2012
Programs
-
Magma
a:= func< n | NumberOfPartitions((7*n+5)) div 7 >; [ a(n) : n in [0..30]]; // Vincenzo Librandi, Nov 30 2015
-
Mathematica
Table[PartitionsP[7n+5]/7, {n, 0, 24}] (* Jean-François Alcover, Nov 30 2015 *)
-
PARI
a(n)=if(n<0, 0, n=7*n+5; polcoeff(1/eta(x+x*O(x^n)),n)/7)
-
PARI
{a(n)=local(A,B); if(n<0, 0, A=x*O(x^n); B=eta(x^7+A); A=eta(x+A); polcoeff( B^3/A^4 +x*7*B^7/A^8, n))} /* Michael Somos, Jan 01 2006 */
-
PARI
a(n) = numbpart(7*n+5)/7; \\ Michel Marcus, Nov 30 2015
Formula
a(n) = (1/7)*A000041(7n+5).
Comments