A071798 Number of paths on the surface of the n-dimensional lattice [0..2]^n; i.e., the lattice paths that do not pass through the point (1,1,...,1).
0, 2, 54, 1944, 99000, 6966000, 655678800, 80103945600, 12372954249600, 2362712677920000, 547235129437920000, 151247218046601600000, 49191138900262719360000, 18601307697723249058560000, 8093164859945489259936000000, 4014620173473616480790016000000
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..238 (first 50 terms from T. D. Noe)
- Eric Weisstein's World of Mathematics, Lattice Path
Crossrefs
Cf. A000680.
Row n=2 of A225094. - Alois P. Heinz, Apr 27 2013
Programs
-
Maple
a:= proc(n) option remember; `if`(n<3, (n-1)*n, n*((3*n^2-7*n+3)*a(n-1)-(2*n-3)*(n-1)^3*a(n-2))/(n-2)) end: seq(a(n), n=1..20); # Alois P. Heinz, Apr 26 2013
-
Mathematica
Table[(2n)!/2^n-(n!)^2, {n, 10}]
Formula
a(n) = (2n)!/2^n - (n!)^2.
Extensions
More terms from Harvey P. Dale, May 26 2011
Comments