A071837 Numbers k with the property that in the prime factorization of k all prime exponents are prime, their sum is also prime and equals the sum of distinct prime factors of k.
4, 27, 72, 108, 800, 3125, 12500, 247808, 823543, 22579200, 37879808, 190512000, 266716800, 428652000, 529200000, 600112800, 868020300, 1190700000, 1234800000, 1452124800, 2420208000, 2679075000, 3267280800, 3307500000, 4984012800, 6994132992, 7351381800, 7441875000, 7717500000, 9376762500
Offset: 1
Examples
800 is a term as 800 = 2^5 * 5^2, 2+5 = 5+2 = 7, and 7,5,2 are primes.
Crossrefs
Programs
-
Mathematica
terms = 24; fromFactors[s_List] := (Times @@ (s^#)&) /@ Permutations[s]; Clear[f]; f[n_] := f[n] = (ssp = Select[Subsets[Prime[Range[n]]] // Rest, PrimeQ[Total[#]]&]; fromFactors /@ ssp // Flatten // Union // PadRight[#, terms]& ); f[2]; f[n = 4]; While[Print["n = ", n]; f[n] != f[n-2], n = n+2]; f[n] (* Jean-François Alcover, Jul 20 2015 *)
-
PARI
isok(n) = {f = factor(n); for (i=1, #f~, if (! isprime(f[i, 2]), return (0));); isprime(se = sum(i=1, #f~, f[i, 2])) && (se == sum(i=1, #f~, f[i, 1]));} \\ Michel Marcus, Aug 21 2014
-
Python
from sympy import factorint, isprime A071837 = [] for n in range(1,10**5): f = factorint(n) fp, fe = list(f.keys()),list(f.values()) if sum(fp) == sum(fe) and isprime(sum(fe)) and all([isprime(e) for e in fe]): A071837.append(n) # Chai Wah Wu, Aug 27 2014
Extensions
Missing terms inserted by Sean A. Irvine, Aug 17 2024