cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071837 Numbers k with the property that in the prime factorization of k all prime exponents are prime, their sum is also prime and equals the sum of distinct prime factors of k.

Original entry on oeis.org

4, 27, 72, 108, 800, 3125, 12500, 247808, 823543, 22579200, 37879808, 190512000, 266716800, 428652000, 529200000, 600112800, 868020300, 1190700000, 1234800000, 1452124800, 2420208000, 2679075000, 3267280800, 3307500000, 4984012800, 6994132992, 7351381800, 7441875000, 7717500000, 9376762500
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 08 2002

Keywords

Examples

			800 is a term as 800 = 2^5 * 5^2, 2+5 = 5+2 = 7, and 7,5,2 are primes.
		

Crossrefs

A240983 and A051674 are subsequences. - Zak Seidov, Aug 21 2014

Programs

  • Mathematica
    terms = 24; fromFactors[s_List] := (Times @@ (s^#)&) /@ Permutations[s]; Clear[f]; f[n_] := f[n] = (ssp = Select[Subsets[Prime[Range[n]]] // Rest, PrimeQ[Total[#]]&]; fromFactors /@ ssp // Flatten // Union // PadRight[#, terms]& ); f[2]; f[n = 4]; While[Print["n = ", n]; f[n] != f[n-2], n = n+2]; f[n] (* Jean-François Alcover, Jul 20 2015 *)
  • PARI
    isok(n) = {f = factor(n); for (i=1, #f~, if (! isprime(f[i, 2]), return (0));); isprime(se = sum(i=1, #f~, f[i, 2])) && (se == sum(i=1, #f~, f[i, 1]));} \\ Michel Marcus, Aug 21 2014
    
  • Python
    from sympy import factorint, isprime
    A071837 = []
    for n in range(1,10**5):
        f = factorint(n)
        fp, fe = list(f.keys()),list(f.values())
        if sum(fp) == sum(fe) and isprime(sum(fe)) and all([isprime(e) for e in fe]):
            A071837.append(n)
    # Chai Wah Wu, Aug 27 2014

Extensions

Missing terms inserted by Sean A. Irvine, Aug 17 2024