cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072000 Number of semiprimes (A001358) <= n.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 7, 8, 8, 8, 9, 10, 10, 10, 10, 10, 10, 10, 11, 12, 13, 13, 13, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 20, 21, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24, 24, 25, 25, 25, 26
Offset: 1

Views

Author

Benoit Cloitre, Jun 19 2002

Keywords

Comments

Number of k <= n such that bigomega(k) = 2.

References

  • A. Hildebrand, On the number of prime factors of an integer, in Ramanujan Revisited (Urbana-Champaign, Ill., 1987), pp. 167-185, Academic Press, Boston, MA, 1988.
  • E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1, Teubner, Leipzig, 1909; third edition : Chelsea, New York (1974).
  • G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, p. 203, Publications de l'Institut Cartan, 1990.

Crossrefs

Programs

  • Maple
    A072000 := proc(n) local sp,t ; sp := 0 ; for t from 1 to n do if numtheory[bigomega](t) = 2 then sp := sp+1 ; fi ; od ; sp ; end proc: # R. J. Mathar, Jun 10 2007
  • Mathematica
    semiPrimePi[n_] := Sum[ PrimePi[n/Prime@i] -i + 1, {i, PrimePi@Sqrt@n}]; Array[semiPrimePi, 78] (* Robert G. Wilson v, Jan 03 2006 *)
    (* If version >= 7 *) a[n_] := Select[Range[n], PrimeOmega[#] == 2 &] // Length; Table[a[n], {n, 1, 77}] (* Jean-François Alcover, Jun 29 2013 *)
    Accumulate[Table[If[PrimeOmega[n]==2,1,0],{n,100}]] (* Harvey P. Dale, Jun 14 2014 *)
  • PARI
    for(n=1,100,print1(sum(i=1,n,if(bigomega(i)-2,0,1)),","))
    
  • PARI
    a(n)=my(s=0,i=0); forprime(p=2, sqrt(n), s+=primepi(n\p); i++); s - i * (i-1)/2 \\ Charles R Greathouse IV, Apr 21 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, prime
    def A072000(n): return int(sum(primepi(n//prime(k))-k+1 for k in range(1,primepi(isqrt(n))+1))) # Chai Wah Wu, Jul 23 2024

Formula

Let PrimePi(x) denote the number of primes <= x (cf. A000720). Then 2*a(n) = Sum_{ primes p <= n/2 } PrimePi(n/p) + PrimePi(sqrt(n)). [Landau, p. 211]
Let PrimePi(x) denote the number of primes <= x (cf. A000720). Then a(n) = Sum_{i=1..PrimePi(sqrt(n))} (PrimePi(n/prime(i)) - i + 1). - Robert G. Wilson v, Feb 07 2006
a(n) = card { x <= n : bigomega(x) = 2 }.
Asymptotically a(n) ~ n*log(log(n))/log(n). [Landau, p. 211]
Let A be a positive integer. Then card { x <= n : bigomega(x) = A } ~ (n/log(n))*log(log(n))^(A-1)/(A-1)! [Landau, p. 211]
a(n) = A072613(n) + A056811(n). - R. J. Mathar, Jun 10 2007
a(n) = Sum_{i=1..n} A064911(i). - Jonathan Vos Post, Dec 30 2007
a(n)*A064911(n) = A174956(n). - Reinhard Zumkeller, Apr 03 2010

Extensions

Edited by Robert G. Wilson v, Feb 15 2006