cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072155 Denominator of Sum_{k=1..n} phi(k)/k.

Original entry on oeis.org

1, 2, 6, 3, 15, 5, 35, 70, 210, 210, 2310, 770, 10010, 10010, 30030, 15015, 255255, 255255, 4849845, 4849845, 4849845, 4849845, 111546435, 37182145, 37182145, 37182145, 111546435, 111546435, 3234846615, 3234846615, 100280245065, 200560490130, 200560490130
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Examples

			1, 3/2, 13/6, 8/3, 52/15, 19/5, 163/35, 361/70, 1223/210, ...
		

Crossrefs

Cf. A071708 (numerators), A250031, A250032, A250034.

Programs

  • GAP
    List([1..35], n-> DenominatorRat( Sum([1..n], k-> Phi(k)/k) ) ); # G. C. Greubel, Aug 25 2019
  • Magma
    [Denominator( &+[EulerPhi(k)/k: k in [1..n]] ): n in [1..35]]; // G. C. Greubel, Aug 25 2019
    
  • Maple
    with(numtheory); seq(denom( add(phi(k)/k, k=1..n)), n =1..35); # G. C. Greubel, Aug 25 2019
  • Mathematica
    Table[Sum[EulerPhi[k]/k,{k,n}],{n,40}]//Denominator (* Harvey P. Dale, Jun 08 2017 *)
  • PARI
    a(n) = denominator(sum(k=1, n, eulerphi(k)/k)); \\ Michel Marcus, Jan 26 2015
    
  • Sage
    [denominator( sum(euler_phi(k)/k for k in (1..n)) ) for n in (1..35)] # G. C. Greubel, Aug 25 2019
    

Formula

Also denominator of Sum_{i=1..n} (mu(i)/i)*floor(n/i). - Ridouane Oudra, Nov 26 2019