A072182 A Wallis pair (x,y) satisfies sigma(x^2) = sigma(y^2); sequence gives x's for Wallis pairs with x < y (ordered by values of x, then y).
4, 12, 28, 36, 44, 52, 68, 76, 84, 92, 108, 116, 124, 132, 148, 156, 164, 172, 188, 196, 204, 212, 228, 236, 244, 252, 268, 276, 284, 292, 308, 316, 324, 326, 332, 348, 356, 364, 372, 388, 396, 404, 406, 412, 428, 436, 444, 452, 468, 476, 484, 492, 508, 516
Offset: 1
Examples
The first few pairs are all multiples of the first pair (4,5): (4, 5), (12, 15), (28, 35), (36, 45), (44, 55), (52, 65), ...
References
- I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a072182 n = a072182_list !! (n-1) (a072182_list, a072186_list) = unzip wallisPairs wallisPairs = [(x, y) | (y, sy) <- tail ws, (x, sx) <- takeWhile ((< y) . fst) ws, sx == sy] where ws = zip [1..] $ map a000203 $ tail a000290_list -- Reinhard Zumkeller, Sep 17 2013
-
Mathematica
w = {}; m = 550; Do[q = DivisorSigma[1, x^2]; sq = Sqrt[q] // Floor; Do[If[q == DivisorSigma[1, y^2], AppendTo[w, {x, y}]], {y, x+1, sq}], {x, 1, m}]; w[[All, 1]] (* Jean-François Alcover, Oct 01 2019 *)
-
PARI
{w=[]; m=550; for(x=1,m,q=sigma(x^2); sq=sqrtint(q); for(y=x+1,sq,if(q==sigma(y^2), w=concat(w,[[x,y]])))); for(j=1,matsize(w)[2],print1(w[j][1],","))}
Extensions
Extended by Klaus Brockhaus and Benoit Cloitre, Oct 22 2002
Comments