A072202 Same numbers of prime factors of forms 4*k+1 and 4*k+3, counted with multiplicity.
1, 2, 4, 8, 15, 16, 30, 32, 35, 39, 51, 55, 60, 64, 70, 78, 87, 91, 95, 102, 110, 111, 115, 119, 120, 123, 128, 140, 143, 155, 156, 159, 174, 182, 183, 187, 190, 203, 204, 215, 219, 220, 222, 225, 230, 235, 238, 240, 246, 247, 256, 259, 267, 280, 286, 287, 291
Offset: 1
Keywords
Examples
825 = 3*5*5*11 = [(4*0+3)*(4*2+3)]*[(4*1+1)*(4*1+1)], therefore 825 is a term.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a072202 n = a072202_list !! (n-1) a072202_list = [x | x <- [1..], a083025 x == a065339 x] -- Reinhard Zumkeller, Jan 10 2012
-
Mathematica
f[n_]:=Plus@@Last/@Select[If[==1,{},FactorInteger[n]],Mod[#[[1]],4]==1&]; Table[f[n],{n,100}] (* Ray Chandler, Dec 18 2011 *)
-
PARI
isok(n) = {my(f = factor(n)); sum(k=1, #f~, ((f[k,1] % 4)==1)*f[k,2]) == sum(k=1, #f~, ((f[k,1] % 4)==3)*f[k,2]);} \\ Michel Marcus, Feb 05 2016
-
Scheme
(define A072202 (ZERO-POS 1 1 A079635)) ;; [requires also my IntSeq-library] - Antti Karttunen, Feb 03 2016
Comments