cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072209 Number of primitive roots of those integers with at least one primitive root.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 4, 4, 2, 8, 2, 6, 4, 10, 8, 4, 6, 12, 8, 8, 12, 6, 16, 12, 10, 22, 12, 8, 24, 6, 12, 28, 16, 8, 20, 24, 24, 12, 24, 18, 16, 40, 12, 40, 22, 32, 12, 40, 32, 24, 52, 36, 48, 28, 40, 16, 40, 36, 48, 20, 64, 44, 24, 24, 72, 40, 48, 24, 18, 54
Offset: 1

Views

Author

Lekraj Beedassy, Jul 03 2002

Keywords

Comments

Essentially sequence A046144 with all zero entries deleted.

Crossrefs

Programs

  • Mathematica
    Reap[ Do[ If[n == 1, Sow[1], If[ IntegerQ[ PrimitiveRoot[n]], Sow[ EulerPhi[ EulerPhi[n]]]]] , {n, 1, 100}]][[2, 1]] (* Jean-François Alcover, Feb 24 2012 *)
    Join[{1},(Length/@PrimitiveRootList[Range[300]])/.(0->Nothing)] (* Harvey P. Dale, Oct 01 2024 *)
  • PARI
    is(n)=if(n%2, isprimepower(n) || n==1, n==2 || n==4 || (isprimepower(n/2, &n) && n>2));
    lista(nn) = for (n=1, nn, if (is(n), print1(eulerphi(eulerphi(n)), ", "))); \\ Michel Marcus, May 12 2017
    
  • Python
    from sympy import primepi, integer_nthroot, totient
    def A072209(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n-1+x-(x>=2)-(x>=4)-sum(primepi(integer_nthroot(x,k)[0])-1 for k in range(1,x.bit_length()))-sum(primepi(integer_nthroot(x>>1,k)[0])-1 for k in range(1,x.bit_length()-1)))
        return totient(totient(bisection(f,n,n))) # Chai Wah Wu, Feb 24 2025

Formula

a(n) = phi(phi(A033948(n))).