A072213 Number of partitions of n^2.
1, 1, 5, 30, 231, 1958, 17977, 173525, 1741630, 18004327, 190569292, 2056148051, 22540654445, 250438925115, 2814570987591, 31946390696157, 365749566870782, 4219388528587095, 49005643635237875, 572612058898037559
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..900 (terms 0..250 from Alois P. Heinz)
Crossrefs
Programs
-
Maple
A072213 := proc(n) combinat[numbpart](n^2) ; end proc: seq(A072213(n),n=0..10) ; # R. J. Mathar, Jan 24 2011
-
Mathematica
Table[ PartitionsP[n^2], {n, 1, 20}]
-
PARI
a(n)=numbpart(n^2)
-
PARI
a(n)=polcoeff(1/eta(x),n^2,x)
-
Sage
[number_of_partitions(n^2)for n in range(0,26)] # Zerinvary Lajos, Nov 26 2009
Formula
a(n) = A000041(n^2).
a(n) ~ exp(Pi*sqrt(2/3)*n) / (4*sqrt(3)*n^2). - Vaclav Kotesovec, Dec 01 2015