A072257 a(n) = ((6*n-17)*4^n - 1)/3.
-6, -15, -27, 21, 597, 4437, 25941, 136533, 677205, 3233109, 15029589, 68506965, 307582293, 1364546901, 5995058517, 26127717717, 113100805461, 486762960213, 2084490794325, 8887718991189
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-24,16).
Programs
-
GAP
List([0..40], n-> ((6*n-17)*4^n -1)/3); # G. C. Greubel, Jan 14 2020
-
Magma
[((6*n-17)*4^n -1)/3: n in [0..40]]; // G. C. Greubel, Jan 14 2020
-
Maple
seq( ((6*n-17)*4^n -1)/3, n=0..40); # G. C. Greubel, Jan 14 2020
-
Mathematica
LinearRecurrence[{9,-24,16},{-6,-15,-27},40] (* Harvey P. Dale, Nov 23 2015 *)
-
PARI
a(n)=((6*n-17)*4^n-1)/3 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[((6*n-17)*4^n -1)/3 for n in (0..40)] # G. C. Greubel, Jan 14 2020
Formula
G.f.: -3*(2-13*x+12*x^2)/((1-x)*(1-4*x)^2). - Bruno Berselli, Dec 16 2011
E.g.f.: (-1/3)*( (17-24*x)*exp(4*x) + exp(x) ). - G. C. Greubel, Jan 14 2020
Extensions
Edited and extended by Henry Bottomley, Aug 06 2002
Comments