cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072290 Number of digits in the decimal expansion of the Champernowne constant that must be scanned to encounter all n-digit strings.

Original entry on oeis.org

1, 11, 192, 2893, 38894, 488895, 5888896, 68888897, 788888898, 8888888899, 98888888900, 1088888888901, 11888888888902, 128888888888903, 1388888888888904, 14888888888888905, 158888888888888906, 1688888888888888907, 17888888888888888908, 188888888888888888909
Offset: 0

Views

Author

Lekraj Beedassy, Jul 11 2002

Keywords

Comments

"Decimal expansion of the Champernowne constant" excludes the initial 0 to the left of the decimal point.
In writing out all numbers 1 through 10^n inclusive, exactly a(n) digits are used, of which a(n-1) are 0's and there are n*10^(n-1) of each of the other digits, with still an extra one for 1's.

References

  • J. D. E. Konhauser et al. "Digit Counting." Problem 134 in Which Way Did The Bicycle Go? Dolciani Math. Exp. No. 18. Washington, DC: Math. Assoc. Amer., pp. 40 and 173-174, 1996.

Crossrefs

Cf. A078427.

Programs

  • Magma
    [(10^(n-1)*n+n-10^n/9+1/9): n in [1..30]]; // Vincenzo Librandi, Jun 06 2011
  • Maple
    A072290:=n->10/9 - 10^n/9 + n + n*10^n: seq(A072290(n), n=0..30); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    f[n_] := 10/9 - 10^n/9 + n + n*10^n; Array[f, 20, 0] (* Robert G. Wilson v, Jul 06 2014 *)
  • PARI
    for(n=1,23,print1(10^(n-1)*n+n-10^n/9+1/9" "));
    
  • PARI
    Vec((91*x^2-11*x+1)/((x-1)^2*(10*x-1)^2) + O(x^100)) \\ Colin Barker, May 22 2014
    

Formula

a(n) = 10/9 - 10^n/9 + n + n*10^n.
a(n+1) = a(n) + 9*(n+1)*10^n + 1.
a(n+1) = n + A053541(n) - A002275(n) = n + A033713(n). - Lekraj Beedassy, Sep 16 2006
a(n) = 22*a(n-1) - 141*a(n-2) + 220*a(n-3) - 100*a(n-4). - Colin Barker, May 22 2014
G.f.: (91*x^2-11*x+1) / ((x-1)^2*(10*x-1)^2). - Colin Barker, May 22 2014

Extensions

More terms from Jason Earls, Dec 18 2002
Description rewritten by Eric W. Weisstein, Sep 14 2013
More terms from Colin Barker, May 22 2014