cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072334 Decimal expansion of e^2.

Original entry on oeis.org

7, 3, 8, 9, 0, 5, 6, 0, 9, 8, 9, 3, 0, 6, 5, 0, 2, 2, 7, 2, 3, 0, 4, 2, 7, 4, 6, 0, 5, 7, 5, 0, 0, 7, 8, 1, 3, 1, 8, 0, 3, 1, 5, 5, 7, 0, 5, 5, 1, 8, 4, 7, 3, 2, 4, 0, 8, 7, 1, 2, 7, 8, 2, 2, 5, 2, 2, 5, 7, 3, 7, 9, 6, 0, 7, 9, 0, 5, 7, 7, 6, 3, 3, 8, 4, 3, 1, 2, 4, 8, 5, 0, 7, 9, 1, 2, 1, 7, 9
Offset: 1

Views

Author

N. J. A. Sloane, Jul 15 2002

Keywords

Comments

Also where x^(1/sqrt(x)) is a maximum. - Robert G. Wilson v, Oct 22 2014

Examples

			7.389056098930650...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 1.4, pages 2 and 28-29.

Crossrefs

Cf. A001204 (continued fraction).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Exp(1)^2; // Vincenzo Librandi, Apr 05 2020
  • Mathematica
    RealDigits[E^2, 10, 100][[1]] (* Vincenzo Librandi, Apr 05 2020 *)
  • PARI
    default(realprecision, 20080); x=exp(2); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b072334.txt", n, " ", d)); \\ Harry J. Smith, Apr 30 2009
    

Formula

Equals Sum_{n>=0} Sum_{k>=0} 1/(n!*k!). - Fredrik Johansson, Apr 21 2006
Equals Sum_{n>=0} 2^n/n!. - Daniel Hoyt Nov 20 2020
From Peter Bala, Jan 13 2022: (Start)
e^2 = Sum_{n >= 0} 2^n/n!. Faster converging series include
e^2 = 8*Sum_{n >= 0} 2^n/(p(n-1)*p(n)*n!), where p(n) = n^2 - n + 2 and
e^2 = -48*Sum_{n >= 0} 2^n/(q(n-1)*q(n)*n!), where q(n) = n^3 + 5*n - 2.
e^2 = 7 + Sum_{n >= 0} 2^(n+3)/((n+2)^2*(n+3)^2*n!) and
7/e^2 = 1 - Sum_{n >= 0} (-2)^(n+1)*n^2/(n+2)!.
e^2 = 7 + 2/(5 + 1/(7 + 1/(9 + 1/(11 + ...)))) (follows from the fact that A004273 is the continued fraction expansion of tanh(1) = (e^2 - 1)/ (e^2 + 1)). Cf. A001204. (End)
Equals lim_{n->oo} (Sum_{k=1..n} 1/binomial(n,k)^x)^(n^x), for all real x > 1/2 (Furdui, 2013). - Amiram Eldar, Mar 26 2022