A072381 Numbers m such that Fibonacci(m) is a semiprime.
8, 9, 10, 14, 19, 22, 26, 31, 34, 41, 53, 59, 61, 71, 73, 79, 89, 94, 101, 107, 109, 113, 121, 127, 151, 167, 173, 191, 193, 199, 227, 251, 271, 277, 293, 331, 353, 397, 401, 467, 587, 599, 601, 613, 631, 653, 743, 991, 1091, 1223, 1373, 1487
Offset: 1
Examples
a(4) = 14 because the 14th Fibonacci number 377 = 13*29 is a semiprime.
Links
- Y. Bugeaud, F. Luca, M. Mignotte and S. Siksek, On Fibonacci numbers with few prime divisors, Proc. Japan Acad., 81, Ser. A (2005), pp. 17-20.
- Ron Knott, Fibonacci numbers
- Blair Kelly, Fibonacci and Lucas Factorizations
Crossrefs
Programs
-
Mathematica
Select[Range[200], Plus@@Last/@FactorInteger[Fibonacci[ # ]] == 2&] (Noe) Select[Range[1500],PrimeOmega[Fibonacci[#]]==2&] (* Harvey P. Dale, Dec 13 2020 *)
-
PARI
for(n=2,9999,bigomega(fibonacci(n))==2&&print1(n",")) \\ - M. F. Hasler, Oct 31 2012
-
PARI
issemi(n)=bigomega(n)==2 is(n)=if(n%2, my(p); if(issquare(n,&p), isprime(p) && isprime(fibonacci(p)) && isprime(fibonacci(n)/fibonacci(p)), isprime(n) && issemi(fibonacci(n))), (isprime(n/2) && isprime(fibonacci(n/2)) && isprime(fibonacci(n)/fibonacci(n/2))) || n==8) \\ Charles R Greathouse IV, Oct 06 2016
Extensions
More terms from Don Reble, Jul 31 2002
a(49)-a(50) from Max Alekseyev, Aug 18 2013
a(51)-a(52) from Max Alekseyev, Jul 10 2016
Comments