cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A072884 3rd-order digital invariants: the sum of the cubes of the digits of n equals some number k and the sum of the cubes of the digits of k equals n.

Original entry on oeis.org

1, 136, 153, 244, 370, 371, 407, 919, 1459
Offset: 1

Views

Author

Keywords

Examples

			136 is included because 1^3 + 3^3 + 6^3 = 244 and 2^3 + 4^3 + 4^3 = 136.
244 is included because 2^3 + 4^3 + 4^3 = 136 and 1^3 + 3^6 + 6^3 = 244.
		

References

  • J.-M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problem 257 pp. 41; 185 Ellipses Paris 2004.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, London, England, 1997, pp. 124-125.

Crossrefs

Cf. A072409.

Programs

  • Mathematica
    f[n_] := Apply[Plus, IntegerDigits[Apply[Plus, IntegerDigits[n]^3]]^3]; Select[ Range[10^7], f[ # ] == # &]
    Select[Range[10000], Plus@@(IntegerDigits[Plus@@(IntegerDigits[ # ]^3)]^3)== #&]

Formula

k such that f(f(k)) = k, where f(k) = A055012(k). - Lekraj Beedassy, Sep 10 2004

A072897 Least n-th order digital invariant which is not an Armstrong number (A005188), or 0 if no such term exists.

Original entry on oeis.org

136, 2178, 58618, 63804, 2755907, 0, 144839908, 304162700, 4370652168, 0, 0, 0, 0, 0, 21914086555935085, 187864919457180831, 0, 13397885590701080090, 0, 0, 0, 19095442247273220984552, 1553298727699254868304830, 1539325689516673750004702, 242402817739393059296681797
Offset: 3

Views

Author

Robert G. Wilson v, Aug 09 2002

Keywords

Comments

An n-th order digital invariant is a number such that the sum of the n-th powers of the digits of n equals some number k and the sum of the n-th powers of the digits of k equals n. An Armstrong number is where n = k.

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, London, England, 1997, pp. 124, 155.

Crossrefs

Programs

  • Mathematica
    Do[k = 1; While[ !(Apply[Plus, IntegerDigits[Apply[Plus, IntegerDigits[k]^n]]^n] == k && Apply[Plus, IntegerDigits[k]^n] != k), k++ ]; Print[k], {n, 3, 7}]

Extensions

a(8)-a(27) from Tim Johannes Ohrtmann, Aug 27 2015

A072896 5th-order digital invariants: the sum of the 5th powers of the digits of n equals some number k and the sum of the 5th powers of the digits of k equals n.

Original entry on oeis.org

1, 4150, 4151, 54748, 58618, 76438, 89883, 92727, 93084, 157596, 194979
Offset: 1

Views

Author

Robert G. Wilson v, Aug 09 2002

Keywords

Examples

			58618 is included because 5^5 + 8^5 + 6^5 + 1^5 + 8^5 = 76438 and 7^5 + 6^5 + 4^5 + 3^5 + 8^5 = 58618.
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, London, England, 1997, pp. 157, 168.

Crossrefs

Cf. A072409.

Programs

  • Mathematica
    f[n_] := Apply[Plus, IntegerDigits[Apply[Plus, IntegerDigits[n]^5]]^5]; Select[ Range[10^7], f[ # ] == # &]
    di5Q[n_]:=Module[{k=Total[IntegerDigits[n]^5]},Total[ IntegerDigits[k]^5] == n]; Select[Range[200000],di5Q] (* Harvey P. Dale, Nov 26 2014 *)
Showing 1-3 of 3 results.