A072608 Parity of remainder Mod(prime(n),n) = A004648(n).
0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 1
Examples
n=25:p(25)=97,Mod[97,25]=22, a(25)=Mod[22,2]=0. With increasing n, a(n) alternates:...010101..,followed after by a range consisting only of 1-s. This secondary alternation also goes on.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A004648.
Programs
-
Haskell
a072608 n = a000040 n `mod` n `mod` 2 -- Reinhard Zumkeller, Dec 16 2013
-
Mathematica
mm[x_] := Mod[Mod[Prime[x], x], 2] Table[mm[w], {w, 1, 256}] Table[Mod[Mod[Prime[n],n],2],{n,110}] (* Harvey P. Dale, Apr 22 2016 *)
-
PARI
a(n)=prime(n)%n%2 \\ Charles R Greathouse IV, Feb 09 2017
Formula
a(n) = Mod(Mod(prime(n), n), 2) = Mod(A004648(n), 2).