cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A072609 Changing of parity of remainder A072608(n) from alternation [..010101..] to steadily 1-range [...1111..]. AC-range corresponds to 0, while DC-range labeled by 1.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Labos Elemer, Jun 24 2002

Keywords

Examples

			Take n = 11,12,13,14: A004648[n]=9,1,2,1. Parity A072608(n) = 1,1,0,1. So ..11.. transforms into 01 between n = 11 and n = 12: a(11) = 1, a(12)=0. With increasing n, A072609(n) changes from ..0000.. into ...1111. reflected by this sequence. by a range consisting only of 1-s. This secondary alternation also goes on.
		

Crossrefs

Programs

  • Mathematica
    mm[x_] := Mod[Mod[Prime[x], x], 2] Table[mm[w]*mm[w+1], {w, 1, 256}]
    Times@@@Partition[Table[Mod[Mod[Prime[n],n],2],{n,110}],2,1] (* Harvey P. Dale, Dec 21 2014 *)

Formula

a(n)=Mod[A004648(n), 2]*Mod[A004648(n+1), 2]= A072608(n)*A072608(n+1)

A072610 Values of transition of A072608(n) from alternating behavior (0,1,0,1,..) into steadily-1 (1,1,1,..) behavior or changing back. Expressing in terms of A072609(n): at n values it switches from steadily 0 into steadily 1 successive values or back.

Original entry on oeis.org

3, 11, 29, 67, 69, 71, 179, 181, 189, 441, 1059, 2699, 6453, 6459, 6471, 15927, 40071, 40083, 40121, 100363, 251705, 251707, 251709, 251721, 251723, 251735, 251737, 251741, 251761, 637233, 637235, 637319, 637321, 637323, 637325, 637329, 637333
Offset: 1

Views

Author

Labos Elemer, Jun 24 2002

Keywords

Comments

Values of n such that A072609(n) != A072609(n+1).
Switching zones appear in clusters of n. Remainder A004648 either drops or starts to increase at these values of n.

Examples

			At n=637330...637370 the change of remainder A004648 is as follows: {..637323, 4, 13, 4, 637333, 637327, 637335, 637323, 637319, 637325, 637321, 4, 11, 4, 7, 34, 29, 26, 17, 44, 43, 46, 41, 38, 49, 52, 49, 44, 37, 28, 37..}
		

Crossrefs

Programs

  • Mathematica
    mm[x_] := Mod[Mod[Prime[x], x], 2];
    pm[x_] := mm[x]*mm[x+1];
    Do[s1=pm[n]; s2=pm[n+1]; If[ !Equal[s1, s2], Print[n]], {n, 10^9}]

A072630 Values of n where A072629 switches from 01010.. into 0000.. or back.

Original entry on oeis.org

1, 7, 19, 53, 147, 403, 1095, 2979, 8103, 22025, 59873, 162753, 442413, 1202603, 3269017, 8886109, 24154951, 65659969, 178482299, 485165195, 1318815733, 3584912845, 9744803445, 26489122129, 72004899337, 195729609427
Offset: 1

Views

Author

Labos Elemer, Jun 28 2002

Keywords

Crossrefs

Programs

  • Mathematica
    m[x_] := Mod[x*Floor[Log[x]//N],2]; Do[s=m[n]+m[n+1]; s1=m[n+1]+m[n+2]; If[ !Equal[s1,s],Print[n]],{n,1,1000000}]

Formula

See program below.
a(n) = A000149(n) or A000149(n)-1 whichever is odd. [From Max Alekseyev, Feb 06 2010]

Extensions

More terms from Max Alekseyev, Feb 06 2010

A072631 Floor( n*log(n) ) mod n.

Original entry on oeis.org

0, 1, 0, 1, 3, 4, 6, 0, 1, 3, 4, 5, 7, 8, 10, 12, 14, 16, 17, 19, 0, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 34, 36, 38, 39, 41, 43, 45, 47, 49, 51, 53, 0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29
Offset: 1

Views

Author

Labos Elemer, Jun 28 2002

Keywords

Comments

Compare with A004648 because prime(n) ~ n * log(n).

Crossrefs

Programs

A072629 Parity of n*floor(log n).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Labos Elemer, Jun 28 2002

Keywords

Comments

a(n)=1 for n: 3, 5, 7, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 149, 151, .... - Robert G. Wilson v, Feb 01 2015

Examples

			Parity either alternates or it is steadily 0. Intervals of such kind also change and return: 01010...0000....0101.., etc.
		

Crossrefs

Programs

Formula

a(n) = n*floor(log(n)) mod 2.

A072623 Numbers n such that A065863(n) = 1, i.e., prime(n) mod (n - Pi(n)) = 1.

Original entry on oeis.org

4, 5, 6, 11, 19, 25, 34, 36, 75, 82, 87, 90, 94, 237, 604, 609, 614, 1583, 1592, 10466, 10467, 10498, 10504, 10505, 70501, 70511, 180227, 180294, 180358, 180443, 180447, 466078, 8103422, 21058343, 21058649, 143052872, 143052877, 143053068
Offset: 1

Views

Author

Labos Elemer, Jun 26 2002

Keywords

Comments

A004648, A065134 and A065863 behave similarly; they grow relatively slowly and drop suddenly at unexpected values of n. Parity of A004648 behaves most regularly.
Each cluster of entries exceeds the previous cluster by a power of e.

Examples

			For the cluster started at n = 10466 the remainders of A065863(n) are as follows: {9089, 9092, 9117, 9127, 9148, 9159, 1, 1, 9180, 9183, 9182, 9179, 9172, 9169, 9168, 9177, 9176, 9178, 9183, 9192, 43}. It behaves like A004648 or A065134.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ Mod[ Prime[n], n-PrimePi[n]] == 1, Print[n]], {n, 1, 150000000}]
    (* Second program: *)
    Position[Table[Mod[Prime[n], n - PrimePi[n]], {n, 10^6}], 1] // Flatten (* Michael De Vlieger, Jul 30 2017 *)

Extensions

Edited by Robert G. Wilson v, Jun 27 2002

A072632 Solutions to A072631[n]=0.

Original entry on oeis.org

1, 3, 8, 21, 55, 149, 404, 1097, 2981, 8104, 22027, 59875, 162755, 442414, 1202605, 3269018
Offset: 1

Views

Author

Labos Elemer, Jun 28 2002

Keywords

Comments

Essentially the same as A001671.

Examples

			Compare with A072610 [related to A004648].
		

Crossrefs

Programs

  • Mathematica
    Do[s=Floor[Mod[Floor[n*Log[n]]//N, n]]; If[s==0, Print[n]], {n, 1, 10000000}]
Showing 1-7 of 7 results.