A072609 Changing of parity of remainder A072608(n) from alternation [..010101..] to steadily 1-range [...1111..]. AC-range corresponds to 0, while DC-range labeled by 1.
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
Take n = 11,12,13,14: A004648[n]=9,1,2,1. Parity A072608(n) = 1,1,0,1. So ..11.. transforms into 01 between n = 11 and n = 12: a(11) = 1, a(12)=0. With increasing n, A072609(n) changes from ..0000.. into ...1111. reflected by this sequence. by a range consisting only of 1-s. This secondary alternation also goes on.
Programs
-
Mathematica
mm[x_] := Mod[Mod[Prime[x], x], 2] Table[mm[w]*mm[w+1], {w, 1, 256}] Times@@@Partition[Table[Mod[Mod[Prime[n],n],2],{n,110}],2,1] (* Harvey P. Dale, Dec 21 2014 *)
Comments