cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072613 Number of numbers of the form p*q (p, q distinct primes) less than or equal to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 9, 10, 10, 10, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 16, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22, 22
Offset: 1

Views

Author

Benoit Cloitre, Aug 11 2002

Keywords

Comments

There was an old comment here that said a(n) was equal to A070548(n) - 1, but this is false (e.g. at n=210). - N. J. A. Sloane, Sep 10 2008
Number of squarefree semiprimes not exceeding n. - Wesley Ivan Hurt, May 25 2015

Examples

			a(6) = 1 since 2*3 is the only number of the form p*q less than or equal to 6.
		

References

  • G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Studies in Advanced Mathematics, 1995.

Crossrefs

Cf. A072000.
Partial sums of A280710.

Programs

  • Maple
    f:=proc(n) local c,i,j,p,q; c:=0; for i from 1 to n do p:=ithprime(i); if p^2 >= n then break; fi; for j from i+1 to n do q:=ithprime(j); if p*q > n then break; fi; c:=c+1; od: od; RETURN(c); end; # N. J. A. Sloane, Sep 10 2008
  • Mathematica
    fPi[n_] := Sum[ PrimePi[n/ Prime@i] - i, {i, PrimePi@ Sqrt@ n}]; Array[ fPi, 81] (* Robert G. Wilson v, Jul 22 2008 *)
    Accumulate[Table[If[PrimeOmega[n] MoebiusMu[n]^2 == 2, 1, 0], {n, 100}]] (* Wesley Ivan Hurt, Jun 01 2017 *)
    Accumulate[Table[If[SquareFreeQ[n]&&PrimeOmega[n]==2,1,0],{n,100}]] (* Harvey P. Dale, Aug 05 2019 *)
  • PARI
    a(n)=sum(k=1,n,if(abs(omega(k)-2)+(1-issquarefree(k)),0,1))
    
  • PARI
    a(n) = my(t=0,i=0); forprime(p = 2, sqrtint(n), i++; t+=primepi(n\p)); t-binomial(i+1,2) \\ David A. Corneth, Jun 02 2017
    
  • PARI
    upto(n) = {my(l=List(), res=[0, 0, 0, 0, 0], j=1, t=0); forprime(p = 2, n, forprime(q=nextprime(p+1), n\p, listput(l, p*q))); listsort(l); for(i=2, #l, t++;res=concat(res, vector(l[i]-l[i-1], j, t))); res} \\ David A. Corneth, Jun 02 2017
    
  • Python
    from math import isqrt
    from sympy import prime, primepi
    def A072613(n): return int(sum(primepi(n//prime(k))-k+1 for k in range(1,primepi(isqrt(n))+1))) - primepi(isqrt(n)) # Chai Wah Wu, Jul 23 2024

Formula

a(n) = Sum_{pA000720, and the sum is over all primes less than sqrt(n). [N-E. Fahssi, Mar 05 2009]
Asymptotically a(n) ~ (n/log(n))log(log(n)) [G. Tenenbaum pp. 200--].
a(n) = Sum_{i<=n | Omega(i)=2} mu(i). - Wesley Ivan Hurt, Jan 05 2013, revised May 25 2015
a(n) = Sum_{i<=n | tau(i)=4} mu(i). - Wesley Ivan Hurt, May 25 2015