A072613 Number of numbers of the form p*q (p, q distinct primes) less than or equal to n.
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 9, 10, 10, 10, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 16, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22, 22
Offset: 1
Examples
a(6) = 1 since 2*3 is the only number of the form p*q less than or equal to 6.
References
- G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Studies in Advanced Mathematics, 1995.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Semiprime.
Programs
-
Maple
f:=proc(n) local c,i,j,p,q; c:=0; for i from 1 to n do p:=ithprime(i); if p^2 >= n then break; fi; for j from i+1 to n do q:=ithprime(j); if p*q > n then break; fi; c:=c+1; od: od; RETURN(c); end; # N. J. A. Sloane, Sep 10 2008
-
Mathematica
fPi[n_] := Sum[ PrimePi[n/ Prime@i] - i, {i, PrimePi@ Sqrt@ n}]; Array[ fPi, 81] (* Robert G. Wilson v, Jul 22 2008 *) Accumulate[Table[If[PrimeOmega[n] MoebiusMu[n]^2 == 2, 1, 0], {n, 100}]] (* Wesley Ivan Hurt, Jun 01 2017 *) Accumulate[Table[If[SquareFreeQ[n]&&PrimeOmega[n]==2,1,0],{n,100}]] (* Harvey P. Dale, Aug 05 2019 *)
-
PARI
a(n)=sum(k=1,n,if(abs(omega(k)-2)+(1-issquarefree(k)),0,1))
-
PARI
a(n) = my(t=0,i=0); forprime(p = 2, sqrtint(n), i++; t+=primepi(n\p)); t-binomial(i+1,2) \\ David A. Corneth, Jun 02 2017
-
PARI
upto(n) = {my(l=List(), res=[0, 0, 0, 0, 0], j=1, t=0); forprime(p = 2, n, forprime(q=nextprime(p+1), n\p, listput(l, p*q))); listsort(l); for(i=2, #l, t++;res=concat(res, vector(l[i]-l[i-1], j, t))); res} \\ David A. Corneth, Jun 02 2017
-
Python
from math import isqrt from sympy import prime, primepi def A072613(n): return int(sum(primepi(n//prime(k))-k+1 for k in range(1,primepi(isqrt(n))+1))) - primepi(isqrt(n)) # Chai Wah Wu, Jul 23 2024
Formula
a(n) = Sum_{pA000720, and the sum is over all primes less than sqrt(n). [N-E. Fahssi, Mar 05 2009]
Asymptotically a(n) ~ (n/log(n))log(log(n)) [G. Tenenbaum pp. 200--].
a(n) = Sum_{i<=n | Omega(i)=2} mu(i). - Wesley Ivan Hurt, Jan 05 2013, revised May 25 2015
a(n) = Sum_{i<=n | tau(i)=4} mu(i). - Wesley Ivan Hurt, May 25 2015
Comments