A072649 n occurs Fibonacci(n) times (cf. A000045).
1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 1
Examples
1, 1, then F(2) 2's, then F(3) 3's, then F(4) 4's, ..., then F(k) k's, ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- A. J. Macfarlane, On the fibbinary numbers and the Wythoff array, arXiv:2405.18128 [math.CO], 2024. See page 4.
- Popular Computing (Calabasas, CA), A Coding Exercise (from a suggestion by R. W. Hamming), Vol. 5 (No. 54, Sep 1977), p. PC55-18.
Crossrefs
Programs
-
Haskell
a072649 n = a072649_list !! (n-1) a072649_list = f 1 where f n = (replicate (fromInteger $ a000045 n) n) ++ f (n+1) -- Reinhard Zumkeller, Jul 04 2011
-
Maple
A072649 := proc(n) local j; for j from ilog[(1+sqrt(5))/2](n) while combinat[fibonacci](j+1)<=n do end do; j-1 end proc: seq(A072649(n), n=1..120); # Alois P. Heinz, Mar 18 2013
-
Mathematica
Table[Table[n, {Fibonacci[n]}], {n, 10}] // Flatten (* Robert G. Wilson v, Jan 14 2007 *) a[n_] := Module[{j}, For[j = Floor@Log[GoldenRatio, n], Fibonacci[j+1] <= n, j++]; j-1]; Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Nov 17 2022, after Alois P. Heinz *)
-
PARI
a(n) = -1+floor(log(((n+0.2)*sqrt(5)))/log((1+sqrt(5))/2))
-
PARI
a(n)=local(m); if(n<1,0,m=0; until(fibonacci(m)>n,m++); m-2)
-
Python
from sympy import fibonacci def a(n): if n<1: return 0 m=0 while fibonacci(m)<=n: m+=1 return m-2 print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 09 2017
-
Python
def A072649(n): a, b, c = 0, 1, -2 while a <= n: a, b = b, a+b c += 1 return c # Chai Wah Wu, Nov 04 2024 (MIT/GNU Scheme) (define (A072649 n) (let ((b (A072648 n))) (+ -1 b (floor->exact (/ n (A000045 (1+ b))))))) ;; (The implementation below is better)
-
Scheme
(define (A072649 n) (if (<= n 3) n (let loop ((k 5)) (if (> (A000045 k) n) (- k 2) (loop (+ 1 k)))))) ;; (Use this with the memoized implementation of A000045 given under that entry. No floating point arithmetic is involved). - Antti Karttunen, Oct 06 2017
Formula
G.f.: (Sum_{n>1} x^Fibonacci(n))/(1-x). - Michael Somos, Apr 25 2003
From Hieronymus Fischer, May 02 2007: (Start)
a(n) = floor(log_phi((sqrt(5)*n + sqrt(5*n^2+4))/2)) - 1, where phi is A001622.
a(n) = floor(arcsinh(sqrt(5)*n/2)/log(phi)) - 1.
a(n) = A108852(n) - 2. (End)
a(n) = -1 + floor( log_phi( (n+0.2)*sqrt(5) ) ), where log_phi(x) is the logarithm to the base (1+sqrt(5))/2. - Ralf Stephan, May 14 2007
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(3*sqrt(3)) (A073010). - Amiram Eldar, Feb 18 2024
Extensions
Typo fixed by Charles R Greathouse IV, Oct 28 2009
Comments