cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072682 Numbers congruent to {3, 36, 54, 57} mod 60.

Original entry on oeis.org

3, 36, 54, 57, 63, 96, 114, 117, 123, 156, 174, 177, 183, 216, 234, 237, 243, 276, 294, 297, 303, 336, 354, 357, 363, 396, 414, 417, 423, 456, 474, 477, 483, 516, 534, 537, 543, 576, 594, 597, 603, 636, 654, 657, 663, 696, 714, 717, 723, 756, 774, 777, 783
Offset: 1

Views

Author

Benoit Cloitre, Aug 07 2002

Keywords

Comments

Numbers n such that the last digit of F(n) is 2 where F(n) is the n-th Fibonacci number.

Crossrefs

Programs

  • Magma
    [n: n in [0..800] | n mod 60 in [3, 36, 54, 57]];  // Bruno Berselli, Jun 14 2016
  • Maple
    A072682:=n->15*n+3*(1+I)*((1-I)*I^(2*n)-(5+2*I)*I^(-n)+(2+5*I)*I^n)/4: seq(A072682(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
  • Mathematica
    Select[Range[800], MemberQ[{3,36,54,57}, Mod[#,60]]&] (* Harvey P. Dale, Apr 07 2013 *)

Formula

Sequence contains numbers of the form: 3+60k, 36+60k, 54+60k, 57+60k, k>=0.
G.f.: 3*x*(1 + 11*x + 6*x^2 + x^3 + x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = 15*n + 3*(1+i)*((1-i)*i^(2*n) - (5+2*i)*i^(-n) + (2+5*i)*i^n)/4 where i=sqrt(-1). (End)

Extensions

Simpler definition from Ralf Stephan, Jun 18 2005