cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A072701 Number of ways to write n as the arithmetic mean of a set of distinct primes.

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 5, 10, 9, 18, 19, 40, 37, 80, 79, 188, 163, 385, 355, 855, 738, 1815, 1555, 3796, 3237, 8281, 6682, 17207, 13967, 35370, 28575, 74385, 58831, 153816, 119948, 312288, 244499, 643535, 495011, 1309267, 997381, 2629257, 2004295, 5334522
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 04 2002 and Jul 15 2002

Keywords

Comments

a(n) = #{ m | A072700(m)=n }.
a(n) < A066571(n).

Examples

			a(6) = 4, as 6 = (5+7)/2 = (2+3+13)/3 = (2+5+11)/3 = (2+3+5+7+13)/5;
a(7) = 5, as 7 = 7/1 = (3+11)/2 = (3+5+13)/3 = (3+7+11)/3 = (3+5+7+13)/4.
		

Crossrefs

Programs

  • Haskell
    a072701 n = f a000040_list 1 n 0 where
       f (p:ps) l nl x
         | y > nl    = 0
         | y < nl    = f ps (l + 1) (nl + n) y + f ps l nl x
         | otherwise = if y `mod` l == 0 then 1 else 0
         where y = x + p
    -- Reinhard Zumkeller, Feb 13 2013
  • Maple
    sp:= proc(i) option remember; `if`(i=1, 2, sp(i-1) +ithprime(i)) end: b:= proc(n,i,t) if n<0 then 0 elif n=0 then `if`(t=0, 1, 0) elif i=2 then `if`(n=2 and t=1, 1, 0) else b(n,i,t):= b(n, prevprime(i), t) +b(n-i, prevprime(i), t-1) fi end: a:= proc(n) local s, k; s:= `if`(isprime(n), 1, 0); for k from 2 while sp(k)/k<=n do s:= s +b(k*n, nextprime(k*n -sp(k-1)-1), k) od; s end: seq(a(n), n=1..28);  # Alois P. Heinz, Jul 20 2009
  • Mathematica
    Needs["DiscreteMath`Combinatorica`"]; a = Drop[ Sort[ Subsets[ Table[ Prime[i], {i, 1, 20}]]], 1]; b = {}; Do[c = Apply[Plus, a[[n]]]/Length[a[[n]]]; If[ IntegerQ[c], b = Append[b, c]], {n, 1, 2^20 - 1}]; b = Sort[b]; Table[ Count[b, n], {n, 1, 20}]
    t = Table[0, {200}]; k = 2; lst = Prime@Range@25; While[k < 2^25+1, slst = Flatten@Subsets[lst, All, {k}]; If[Mod[Plus @@ slst, Length@slst] == 0, t[[(Plus @@ slst)/(Length@slst)]]++ ]; k++ ]; t (* Robert G. Wilson v *)
    sp[i_] := sp[i] = If[i == 1, 2, sp[i - 1] + Prime[i]];
    b[n_, i_, t_] := b[n, i, t] = Which[n < 0, 0, n == 0, If[t == 0, 1, 0], i == 2, If[n == 2 && t == 1, 1, 0], True, b[n, NextPrime[i, -1], t] + b[n - i, NextPrime[i, -1], t - 1]];
    a[n_] := Module[{s, k}, s = If[PrimeQ[n], 1, 0]; For[k = 2, sp[k]/k <= n, k++, s = s + b[k*n, NextPrime[k*n - sp[k - 1] - 1], k]]; s];
    Table[a[n], {n, 1, 44}] (* Jean-François Alcover, Feb 13 2018, after Alois P. Heinz *)

Extensions

Corrected by John W. Layman, Jul 11 2002
More terms from Alois P. Heinz, Jul 20 2009

A072697 Squarefree numbers such that the sum of the prime factors is a multiple of the number of prime factors.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 42, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 78, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 110, 111, 113, 114, 115, 119, 123, 127, 129, 131, 133, 137, 139, 141, 143
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 04 2002

Keywords

Examples

			42=2*3*7: number of factors = 3 and sum of factors =2+3+7=12, as 12=4*3, 42 is a term: a(19)=42, A072698(19)=3, A072699(19)=12 and A072700(19)=4 contributes 1 count for A072701(4), as (2+3+7)/3=4.
		

Crossrefs

Programs

  • Magma
    [k:k in [2..200]| IsSquarefree(k) and IsIntegral(&+PrimeDivisors(k)/#PrimeDivisors(k))]; // Marius A. Burtea, Nov 14 2019
  • Mathematica
    Select[ Range[2, 143], SquareFreeQ[#] && Divisible[ Tr[ fi = FactorInteger[#][[All, 1]]], Length[fi]]& ](* Jean-François Alcover, Jul 11 2012 *)

A072698 Sum of prime factors of A072697(n).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 8, 17, 19, 10, 23, 29, 31, 14, 12, 37, 16, 41, 12, 43, 47, 20, 53, 16, 22, 59, 61, 18, 67, 26, 71, 73, 18, 18, 79, 83, 22, 32, 89, 20, 34, 24, 97, 101, 103, 15, 107, 109, 18, 40, 113, 24, 28, 24, 44, 127, 46, 131, 26, 137, 139, 50, 24, 34, 149, 151, 36
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 04 2002

Keywords

Comments

a(n) = A001414(A072697(n)) = A008472(A072697(n)).

Examples

			a(19) = A001414(A072697(19)) = A001414(42) = A001414(2*3*7) = 2+3+7 = 12.
		

Crossrefs

A072699 Number of prime factors of A072697(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 3, 1, 1, 3, 2, 1, 3, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 3, 2, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 1, 1, 1, 3, 3, 1, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 04 2002

Keywords

Comments

a(n) = A001222(A072697(n)) = A001221(A072697(n)).

Examples

			a(19) = A001222(A072697(19)) = A001222(42) = A001222(2*3*7) = 3.
		

Crossrefs

Showing 1-4 of 4 results.