cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A072698 Sum of prime factors of A072697(n).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 8, 17, 19, 10, 23, 29, 31, 14, 12, 37, 16, 41, 12, 43, 47, 20, 53, 16, 22, 59, 61, 18, 67, 26, 71, 73, 18, 18, 79, 83, 22, 32, 89, 20, 34, 24, 97, 101, 103, 15, 107, 109, 18, 40, 113, 24, 28, 24, 44, 127, 46, 131, 26, 137, 139, 50, 24, 34, 149, 151, 36
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 04 2002

Keywords

Comments

a(n) = A001414(A072697(n)) = A008472(A072697(n)).

Examples

			a(19) = A001414(A072697(19)) = A001414(42) = A001414(2*3*7) = 2+3+7 = 12.
		

Crossrefs

A072699 Number of prime factors of A072697(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 3, 1, 1, 3, 2, 1, 3, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 3, 2, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 1, 1, 1, 3, 3, 1, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 04 2002

Keywords

Comments

a(n) = A001222(A072697(n)) = A001221(A072697(n)).

Examples

			a(19) = A001222(A072697(19)) = A001222(42) = A001222(2*3*7) = 3.
		

Crossrefs

A072701 Number of ways to write n as the arithmetic mean of a set of distinct primes.

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 5, 10, 9, 18, 19, 40, 37, 80, 79, 188, 163, 385, 355, 855, 738, 1815, 1555, 3796, 3237, 8281, 6682, 17207, 13967, 35370, 28575, 74385, 58831, 153816, 119948, 312288, 244499, 643535, 495011, 1309267, 997381, 2629257, 2004295, 5334522
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 04 2002 and Jul 15 2002

Keywords

Comments

a(n) = #{ m | A072700(m)=n }.
a(n) < A066571(n).

Examples

			a(6) = 4, as 6 = (5+7)/2 = (2+3+13)/3 = (2+5+11)/3 = (2+3+5+7+13)/5;
a(7) = 5, as 7 = 7/1 = (3+11)/2 = (3+5+13)/3 = (3+7+11)/3 = (3+5+7+13)/4.
		

Crossrefs

Programs

  • Haskell
    a072701 n = f a000040_list 1 n 0 where
       f (p:ps) l nl x
         | y > nl    = 0
         | y < nl    = f ps (l + 1) (nl + n) y + f ps l nl x
         | otherwise = if y `mod` l == 0 then 1 else 0
         where y = x + p
    -- Reinhard Zumkeller, Feb 13 2013
  • Maple
    sp:= proc(i) option remember; `if`(i=1, 2, sp(i-1) +ithprime(i)) end: b:= proc(n,i,t) if n<0 then 0 elif n=0 then `if`(t=0, 1, 0) elif i=2 then `if`(n=2 and t=1, 1, 0) else b(n,i,t):= b(n, prevprime(i), t) +b(n-i, prevprime(i), t-1) fi end: a:= proc(n) local s, k; s:= `if`(isprime(n), 1, 0); for k from 2 while sp(k)/k<=n do s:= s +b(k*n, nextprime(k*n -sp(k-1)-1), k) od; s end: seq(a(n), n=1..28);  # Alois P. Heinz, Jul 20 2009
  • Mathematica
    Needs["DiscreteMath`Combinatorica`"]; a = Drop[ Sort[ Subsets[ Table[ Prime[i], {i, 1, 20}]]], 1]; b = {}; Do[c = Apply[Plus, a[[n]]]/Length[a[[n]]]; If[ IntegerQ[c], b = Append[b, c]], {n, 1, 2^20 - 1}]; b = Sort[b]; Table[ Count[b, n], {n, 1, 20}]
    t = Table[0, {200}]; k = 2; lst = Prime@Range@25; While[k < 2^25+1, slst = Flatten@Subsets[lst, All, {k}]; If[Mod[Plus @@ slst, Length@slst] == 0, t[[(Plus @@ slst)/(Length@slst)]]++ ]; k++ ]; t (* Robert G. Wilson v *)
    sp[i_] := sp[i] = If[i == 1, 2, sp[i - 1] + Prime[i]];
    b[n_, i_, t_] := b[n, i, t] = Which[n < 0, 0, n == 0, If[t == 0, 1, 0], i == 2, If[n == 2 && t == 1, 1, 0], True, b[n, NextPrime[i, -1], t] + b[n - i, NextPrime[i, -1], t - 1]];
    a[n_] := Module[{s, k}, s = If[PrimeQ[n], 1, 0]; For[k = 2, sp[k]/k <= n, k++, s = s + b[k*n, NextPrime[k*n - sp[k - 1] - 1], k]]; s];
    Table[a[n], {n, 1, 44}] (* Jean-François Alcover, Feb 13 2018, after Alois P. Heinz *)

Extensions

Corrected by John W. Layman, Jul 11 2002
More terms from Alois P. Heinz, Jul 20 2009

A072700 A072698(n) / A072699(n).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 4, 17, 19, 5, 23, 29, 31, 7, 6, 37, 8, 41, 4, 43, 47, 10, 53, 8, 11, 59, 61, 9, 67, 13, 71, 73, 9, 6, 79, 83, 11, 16, 89, 10, 17, 12, 97, 101, 103, 5, 107, 109, 6, 20, 113, 8, 14, 12, 22, 127, 23, 131, 13, 137, 139, 25, 12, 17, 149, 151, 18, 157, 28, 15
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 04 2002

Keywords

Examples

			a(19) = A072698(19)/A072699(19) = 12/3 = 4.
		

Crossrefs

A300393 Least squarefree number with n prime factors whose average is an integer.

Original entry on oeis.org

2, 15, 42, 1365, 2730, 451605, 870870, 140645505, 300690390, 139098404445, 304075581810, 217908972526245, 485155825624470, 378943703223140055, 1033538145201932370, 1433000638322479231005, 1987938667108592728530, 4573285492841794762027995, 12549856805456545895209890
Offset: 1

Views

Author

Paolo P. Lava, Mar 05 2018

Keywords

Comments

A103622 lists the average values.
The parity of a(n) is different from the parity of n. - David A. Corneth, Mar 20 2018

Crossrefs

Subsequence of A072697. - Michel Marcus, Mar 19 2018

Programs

  • Maple
    with(combinat): P:=proc(q) local a,b,c,d,j,k,x; x:=[];
    for j from 1 to q do x:=[op(x),ithprime(j)]; od; for j from 1 to q do
    a:=choose(x,j); b:=10^40; d:=0;
    for k from 1 to nops(a) do c:=convert(a[k],`+`)/j;
    if frac(c)=0 and c
    				
  • Mathematica
    f[n_] := If[n == 0, {1}, Block[{P = Product[Prime@ i, {i, n}], lim, k = 1, c, w = ConstantArray[1, n]},lim = Prime[n + 1] P;{w}~Join~Reap[Do[w = If[k == 1, MapAt[# + 1 &, w, -k], Join[Drop[MapAt[# + 1 &, w, -k], -k + 1], ConstantArray[1, k - 1]]]; c = Times @@ Map[If[# == 0, 1, Prime@ #] &, Accumulate@ w]; If[c < lim, Sow[w]; k = 1, If[k == n, Break[], k++]], {i, Infinity}]][[-1, 1]]]]; Array[Min@ Map[Times @@ # &, Select[Map[Prime@ Accumulate@ # &, f@ #], IntegerQ@ Mean@ # &]] &, 14] (* Michael De Vlieger, Mar 19 2018 *)

Formula

a(1) = 2; 2/1 = 2;
a(2) = 15; (3+5)/2 = 4;
a(3) = 42; (2+3+7)/3 = 4;
a(4) = 1365; (3+5+7+13)/4 = 7;
a(5) = 2730; (2+3+5+7+13)/5 = 6.
Showing 1-5 of 5 results.