cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072703 Indices of Fibonacci numbers whose last digit is 5.

Original entry on oeis.org

5, 10, 20, 25, 35, 40, 50, 55, 65, 70, 80, 85, 95, 100, 110, 115, 125, 130, 140, 145, 155, 160, 170, 175, 185, 190, 200, 205, 215, 220, 230, 235, 245, 250, 260, 265, 275, 280, 290, 295, 305, 310, 320, 325, 335, 340, 350, 355, 365, 370, 380, 385, 395, 400, 410
Offset: 1

Views

Author

Benoit Cloitre, Aug 07 2002

Keywords

Comments

Sequence contains numbers of the forms 5 + 60*k, 10 + 60*k, 20 + 60*k, 25 + 60*k, 35 + 60*k, 40 + 60*k, 50 + 60*k, 55 + 60*k, where k>=0.
Numbers that are congruent to {5, 10} mod 15. - Amiram Eldar, Jan 01 2022, Nov 25 2024

Crossrefs

Programs

Formula

a(n) = 15*(n-1)-a(n-1), with a(1) = 5. - Vincenzo Librandi, Aug 08 2010
From Harvey P. Dale, May 15 2011: (Start)
a(1) = 5, a(2) = 10, a(3) = 20, a(n) = a(n-1)+a(n-2)-a(n-3).
a(n) = -(5/4)*(3+(-1)^n-6*n). (End)
G.f.: 5*x*(x^2+x+1) / ((x-1)^2*(x+1)). - Colin Barker, Jun 16 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(15*sqrt(3)) = A248897 / 10. - Amiram Eldar, Jan 01 2022
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cos(Pi/10)*sec(Pi/6) = sqrt((5+sqrt(5))/6).
Product_{n>=1} (1 + (-1)^n/a(n)) = (2/sqrt(3))*cos(7*Pi/30). (End)
a(n) = 5 * A001651(n). - Alois P. Heinz, Nov 27 2024

Extensions

Edited by M. F. Hasler, Oct 08 2014