A072703 Indices of Fibonacci numbers whose last digit is 5.
5, 10, 20, 25, 35, 40, 50, 55, 65, 70, 80, 85, 95, 100, 110, 115, 125, 130, 140, 145, 155, 160, 170, 175, 185, 190, 200, 205, 215, 220, 230, 235, 245, 250, 260, 265, 275, 280, 290, 295, 305, 310, 320, 325, 335, 340, 350, 355, 365, 370, 380, 385, 395, 400, 410
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
Flatten[Position[Fibonacci[Range[400]],?(Last[IntegerDigits[#]]==5&)]] (* or *) LinearRecurrence[{1,1,-1},{5,10,20},60] (* or *) Table[-(5/4) (3+(-1)^n-6 n),{n,60}] (* _Harvey P. Dale, May 15 2011 *)
Formula
a(n) = 15*(n-1)-a(n-1), with a(1) = 5. - Vincenzo Librandi, Aug 08 2010
From Harvey P. Dale, May 15 2011: (Start)
a(1) = 5, a(2) = 10, a(3) = 20, a(n) = a(n-1)+a(n-2)-a(n-3).
a(n) = -(5/4)*(3+(-1)^n-6*n). (End)
G.f.: 5*x*(x^2+x+1) / ((x-1)^2*(x+1)). - Colin Barker, Jun 16 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(15*sqrt(3)) = A248897 / 10. - Amiram Eldar, Jan 01 2022
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cos(Pi/10)*sec(Pi/6) = sqrt((5+sqrt(5))/6).
Product_{n>=1} (1 + (-1)^n/a(n)) = (2/sqrt(3))*cos(7*Pi/30). (End)
a(n) = 5 * A001651(n). - Alois P. Heinz, Nov 27 2024
Extensions
Edited by M. F. Hasler, Oct 08 2014
Comments