cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072873 Numbers k such that Sum_i ( e(i)/p(i) ) is an integer, where the prime factorization of k is Product_i ( p(i)^e(i) ).

Original entry on oeis.org

1, 4, 16, 27, 64, 108, 256, 432, 729, 1024, 1728, 2916, 3125, 4096, 6912, 11664, 12500, 16384, 19683, 27648, 46656, 50000, 65536, 78732, 84375, 110592, 186624, 200000, 262144, 314928, 337500, 442368, 531441, 746496, 800000, 823543
Offset: 1

Views

Author

Benoit Cloitre, Jul 28 2002

Keywords

Comments

Also, numbers k such that k divides k', the arithmetic derivative of k. As shown by Ufnarovski and Ahlander, all terms in this sequence have the form Product_{j=1..r} (pj^pj)^ej, where the pj are primes. The quotient k'/k equals Sum_{j=1..r} ej. - T. D. Noe, Jan 04 2006
Multiplicative closure of A051674. - Reinhard Zumkeller, Jan 21 2012
The number of terms < 10^k: 2, 5, 9, 15, 25, 36, 52, 73, 98, 128, 167, 213, 270, 338, 421, 517, 632, 768, 920, 1101, ..., . - Robert G. Wilson v, Jan 19 2016

Examples

			108 is in the sequence because 108 = 2^2*3^3 and 2/2 + 3/3 = 2 is an integer.
		

References

Crossrefs

Programs

  • Haskell
    import Data.Set (empty, fromList, deleteFindMin, union)
    import qualified Data.Set as Set (null)
    a072873 n = a072873_list !! (n-1)
    a072873_list = 1 : h empty [1] a051674_list where
       h s mcs xs'@(x:xs)
        | Set.null s || x < m = h (s `union` fromList (map (* x) mcs)) mcs xs
        | otherwise = m : h (s' `union` fromList (map (* m) $ init (m:mcs)))
                            (m:mcs) xs'
        where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jan 21 2012
    
  • Mathematica
    Select[Range[1000000],IntegerQ[Total[#[[2]]/#[[1]]&/@FactorInteger[#]]]&] (* Harvey P. Dale, Jul 04 2014 *)
    lst = {}; Do[n = 2^e2*3^e3*5^e5*7^e7; If[n < 10^11, AppendTo[lst, n]], {e2, 0, 36, 2}, {e3, 0, 23, 3}, {e5, 0, 15, 5}, {e7, 0, 13, 7}]; Take[ Sort@ lst, 40] (* Robert G. Wilson v, Jan 19 2016 *)
  • PARI
    is(n)=my(f=factor(n)); for(i=1,#f~,if(f[i,2]%f[i,1], return(0))); 1 \\ Charles R Greathouse IV, Oct 28 2014
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A072873_gen(startvalue=1): # generator of terms >= startvalue
        return (k for k in count(max(startvalue,1)) if not any(e%p for p, e in factorint(k).items()))
    A072873_list = list(islice(A072873_gen(),20)) # Chai Wah Wu, Sep 15 2023

Formula

A124010(a(n),k) mod A027748(a(n),k) = 0 for k = 1 .. A001221(a(n)). - Reinhard Zumkeller, Jan 21 2012
Sum_{n>=1} 1/a(n) = Product_{p prime} p^p/(p^p-1) = 1.38506028520448917638... - Amiram Eldar, Sep 27 2020

Extensions

More terms from T. D. Noe, Jan 04 2006