cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072879 a(n) = 5*a(n-1)*a(n-2)*a(n-3)*a(n-4) - a(n-5) with a(1) = a(2) = a(3) = a(4) = a(5) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 19, 379, 144019, 20741616379, 107553662508585672001, 608831069421618273050865038881215685876, 978035016076705458999330010986670207956236476587064788804921180339451725001
Offset: 1

Views

Author

Benoit Cloitre, Jul 28 2002

Keywords

Comments

Solutions of the Hurwitz equation in five variables.

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_,e_}]:={b,c,d,e,(5b c d e)-a}; NestList[nxt,{1,1,1,1,1},20][[All,1]] (* Harvey P. Dale, Nov 07 2016 *)

Formula

a(1) = a(2) = a(3) = a(4) = a(5) = 1; a(n) = (a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-4)^2)/a(n-5) for n >= 6.
From the recurrence a(n) = 5*a(n-1)*a(n-2)*a(n-3)*a(n-4) - a(n-5), any five successive terms satisfy the five-variable Hurwitz equation a(n)^2+a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-4)^2 = 5*a(n)*a(n-1)*a(n-2)*a(n-3)*a(n-4). As n tends to infinity, the limit of log(log(a(n)))/n is log x = 0.6562559790..., where x=1.927561975... is the largest real root of the quartic x^4-x^3-x^2-x-1=0. - Andrew Hone, Nov 16 2005

Extensions

Entry revised Nov 19 2005, based on comments from Andrew Hone
Name clarified by Petros Hadjicostas, May 11 2019