cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A072558 Decimal expansion of the one-ninth constant.

Original entry on oeis.org

1, 0, 7, 6, 5, 3, 9, 1, 9, 2, 2, 6, 4, 8, 4, 5, 7, 6, 6, 1, 5, 3, 2, 3, 4, 4, 5, 0, 9, 0, 9, 4, 7, 1, 9, 0, 5, 8, 7, 9, 7, 6, 5, 6, 3, 2, 9, 0, 1, 1, 5, 0, 8, 6, 6, 9, 8, 5, 6, 8, 1, 4, 6, 9, 8, 1, 9, 2, 4, 3, 4, 1, 4, 6, 2, 6, 4, 2, 6, 4, 3, 4, 1, 2, 7, 7, 6, 1, 9, 9, 0, 4, 0, 9, 1, 5, 8, 7, 3, 1, 9, 2, 9, 6, 7
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

The generating function of A113184 equals 1/8 at q = Lambda = 0.1076539192... where K(k)=2E(k). - Michael Somos, Jul 21 2006

Examples

			0.1076539192264845766153234450909471905879...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 259-262.

Crossrefs

Programs

  • Mathematica
    c = k /. FindRoot[ EllipticK[k^2] == 2*EllipticE[k^2], {k, 9/10}, WorkingPrecision -> 120]; Take[ RealDigits[ N[Exp[-Pi*(EllipticK[1 - c^2] / EllipticK[c^2])], 120]][[1]], 105] (* Jean-François Alcover, Jul 28 2011, after MathWorld *)
    RealDigits[q /. FindRoot[4 EllipticE[InverseEllipticNomeQ[q]] == Pi EllipticTheta[3, 0, q]^2, {q, 1/9, 0, 1}, WorkingPrecision -> 105]][[1]] (* Jan Mangaldan, Jun 25 2020 *)
  • PARI
    c=solve(x=.9,.91, ellK(x)-2*ellE(x)); exp(-Pi*ellK(sqrt(1 - c^2))/ellK(c)) \\ Charles R Greathouse IV, Feb 04 2025

A193219 Expansion of sqrt((2/Pi)*elliptic_E(k)) in powers of q.

Original entry on oeis.org

1, -2, 8, -16, 18, -32, 112, -192, 0, 62, 1840, -3312, -8320, 16480, 71840, -137280, -522174, 1011392, 4107960, -7945008, -32457600, 62909120, 261338416, -506930112, -2129035776, 4133297534, 17531850576, -34058050240, -145663683072, 283125653280, 1219649036576, -2371704375168, -10281070960128, 20000146662464, 87178011852896
Offset: 0

Views

Author

Joerg Arndt, Aug 26 2011

Keywords

Comments

Let s = 16*q*(E1*E4^2/E2^3)^8 where Ek = Product_{n>=1} (1-q^(k*n)) (s=k^2 where k is elliptic k), then the g.f. is sqrt(hypergeom([-1/2, +1/2], [+1], s)) (expansion of sqrt((2/Pi)*elliptic_E(k)) in powers of q).
The corresponding sequence for sqrt((2/Pi)*elliptic_K(k)) is A000122.

Examples

			sqrt(E(k(q))) = 1 - 2*q + 8*q^2 - 16*q^3 + 18*q^4 - 32*q^5 + 112*q^6 - 192*q^7 +- ...
		

Crossrefs

Cf. A194094 (elliptic_E(k(q))), A004018 (elliptic_K(k(q))), A000122 (sqrt(elliptic_K(k(q)))=Theta3(q)), A115977 (elliptic k(q)^2).

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[(2/Pi) EllipticE[InverseEllipticNomeQ[q]]], {q, 0, 50}], q] (* Jan Mangaldan, Dec 07 2021 *)
    nmax = 30; dtheta = D[Normal[Series[EllipticTheta[3, 0, x], {x, 0, nmax}]], x]; CoefficientList[Series[Sqrt[(EllipticTheta[4, 0, x]^4*EllipticTheta[3, 0, x] + 4*x*dtheta)/EllipticTheta[3, 0, x]^3], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 15 2023 *)

Formula

From Vaclav Kotesovec, Nov 16 2023: (Start)
abs(a(n)) ~ c * d^n / n^(3/2), where
d = 1/sqrt(A072558) = sqrt(A073007) = 3.0477902637682959365706804198489438625220426001497960504423261561153885844...
c = 0.60315114232684465914106139794838284733424313832900503234838172483814652... if n is even and
c = 0.38688142678580145044658710898009855553630625532976316366806686926256857... if n is odd. (End)

A072559 Continued fraction expansion of the One-ninth constant (A072558).

Original entry on oeis.org

0, 9, 3, 2, 5, 1, 2, 1, 3, 2, 1, 3, 1, 1, 1, 1, 11, 1, 1, 3, 1, 1, 8, 2, 3330, 1, 1, 5, 3, 7, 23, 1, 3, 3, 1, 1, 1, 1, 1, 4, 1, 5, 14, 4, 2, 2, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4, 1, 2, 1, 1, 1, 76, 3, 1, 16, 2, 2, 1, 7, 1, 11, 1, 1, 1, 1, 1, 21, 1, 109, 2, 4, 1, 3, 6, 5, 7, 5, 5, 4, 1, 4, 2, 1, 6, 2, 1
Offset: 0

Views

Author

Robert G. Wilson v, Aug 05 2002

Keywords

Comments

Essentially same as the continued fraction for the Varga constant (A073007).

Crossrefs

Cf. A072558 (decimal expansion).

Extensions

Offset changed by Andrew Howroyd, Jul 06 2024
Showing 1-3 of 3 results.