cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073059 a(n) = (1/2)*(A073504(n+1) - A073504(n)).

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Benoit Cloitre and Boris Gourevitch (boris(AT)pi314.net), Aug 16 2002

Keywords

Comments

Let m be any fixed positive integer and let Fr(m,n) := 3*Sum_{k = 1..n} A073504(k) - n^2 + m*n. Then Fr(m,n) allows us to generate fractal sequences, i.e., there is an integer B(m) such that the graph for Fr(n,m) is fractal-like for 1 <= n <= B(m). B(m) depends on the parity of m: B(2*p+1) = (5/3)*(4^p - 1) and B(2*p) =(2/3)*(4^p - 1). [Formula for Fr(m,n) corrected by Petros Hadjicostas, Oct 21 2019]

Crossrefs

Not the same as the period-doubling sequence A096268!
Cf. A073504 and A071992 (curiously A071992 presents the same fractal aspects as Fr(n, m)).
Cf. A098725.

Programs

  • PARI
    \\ To generate graphs:
    for(n = 1,taille,u1=1; u2=n; while((u2!=u1)||((u2%2)==1),u3=u2; u2=floor(u2/2)+floor(u1/2); u1=u3; ); b[n]=u2; ) fr(m,k)=(3*sum(i=1,k,b[i]))-k^2+m*k; bound(m)=if((m%2)==1,p=(m-1)/2; 5/3*(4^p-1),2/3*(4^(m/2)-1)); m=5; fractal=vector(bound(m)); for(i=1,bound(m),fractal[i]=fr(m,i); ); Mm=vecmax(fractal) indices=vector(bound(m)); for(i=1,bound(m), indices[i]=i); myStr=plothrawexport("svg",indices,fractal,1);write("myPlot.svg",myStr);
    
  • PARI
    A073059(n) = if(1==n,0,if(!(n%2),0,if(3==(n%4),1,A073059((n-1)/4)))); \\ Antti Karttunen, Oct 09 2018, after Ralf Stephan's Dec 11 2004 formula
    
  • PARI
    up_to = 10000;
    A073504list(up_to) = { my(v=vector(up_to)); for(n=1, up_to, u1=1; u2=n; while((u2!=u1)||((u2%2) == 1), u3=u2; u2=(u2\2)+(u1\2); u1=u3); v[n]=u2); (v); };
    v073504 = A073504list(up_to);
    A073504(n) = v073504[n];
    A073059(n) = (1/2)*(A073504(n+1)-A073504(n)); \\ Antti Karttunen, Nov 27 2018, after code sent by Benoit Cloitre (personal communication), implementing the original definition
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A073059(n): return (1 if n&2 else A073059(n>>2)) if n&1 else 0 # Chai Wah Wu, Feb 07 2025

Formula

a(4*k+3) = 1, a(4*k+2) = a(4*k+4) = 0, a(16*k+13) = 1, ...
A073504(n) = Sum_{k = 1..n} a(k) is asymptotic to 2*n/3.
a(2*n) = 0, a(4*n+3) = 1, a(4*n+1) = a(n). - Ralf Stephan, Dec 11 2004

Extensions

Erroneous formula removed by Antti Karttunen, Oct 09 2018