cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A096268 Period-doubling sequence (or period-doubling word): fixed point of the morphism 0 -> 01, 1 -> 00.

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jun 22 2004

Keywords

Comments

Take highest power of 2 dividing n (A007814(n+1)), read modulo 2.
For the scale-invariance properties see Hendriks et al., 2012.
This is the sequence that results from the ternary Thue-Morse sequence (A036577) if all twos in that sequence are replaced by zeros. - Nathan Fox, Mar 12 2013
This sequence can be used to draw the Von Koch snowflake with a suitable walk in the plane. Start from the origin then the n-th step is "turn +Pi/3 if a(n)=0 and turn -2*Pi/3 if a(n)=1" (see link for a plot of the first 200000 steps). - Benoit Cloitre, Nov 10 2013
1 iff the number of trailing zeros in the binary representation of n+1 is odd. - Ralf Stephan, Nov 11 2013
Equivalently, with offset 1, the characteristic function of A036554 and an indicator for the A003159/A036554 classification of positive integers. - Peter Munn, Jun 02 2020

Examples

			Start: 0
Rules:
  0 --> 01
  1 --> 00
-------------
0:   (#=1)
  0
1:   (#=2)
  01
2:   (#=4)
  0100
3:   (#=8)
  01000101
4:   (#=16)
  0100010101000100
5:   (#=32)
  01000101010001000100010101000101
6:   (#=64)
  0100010101000100010001010100010101000101010001000100010101000100
7:   (#=128)
  010001010100010001000101010001010100010101000100010001010100010001000101010...
[_Joerg Arndt_, Jul 06 2011]
		

References

  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

Crossrefs

Not the same as A073059!
Swapping 0 and 1 gives A035263.
Cf. A056832, A123087 (partial sums).
With offset 1, classification indicator for A003159/A036554.
Also with offset 1: A007814 mod 2 (cf. A096271 for mod 3), A048675 mod 2 (cf. A332813 for mod 3), A059975 mod 2.

Programs

  • Haskell
    a096268 = (subtract 1) . a056832 . (+ 1)
    -- Reinhard Zumkeller, Jul 29 2014
    
  • Magma
    [Valuation(n+1, 2) mod 2: n in [0..100]]; // Vincenzo Librandi, Jul 20 2016
    
  • Maple
    nmax:=104: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do a((2*n+1)*2^p-1) := p mod 2 od: od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Feb 02 2013
    # second Maple program:
    a:= proc(n) a(n):= `if`(n::even, 0, 1-a((n-1)/2)) end:
    seq(a(n), n=0..125);  # Alois P. Heinz, Mar 20 2019
  • Mathematica
    Nest[ Flatten[ # /. {0 -> {1, 0}, 1 -> {0, 0}}] &, {1}, 7] (* Robert G. Wilson v, Mar 05 2005 *)
    {{0}}~Join~SubstitutionSystem[{0 -> {0, 1}, 1 -> {0, 0}}, {1}, 6] // Flatten (* Michael De Vlieger, Aug 15 2016 *)
  • PARI
    a(n)=valuation(n+1,2)%2 \\ Ralf Stephan, Nov 11 2013
    
  • Python
    def A096268(n): return (~(n+1)&n).bit_length()&1 # Chai Wah Wu, Jan 09 2023

Formula

Recurrence: a(2*n) = 0, a(4*n+1) = 1, a(4*n+3) = a(n). - Ralf Stephan, Dec 11 2004
The recurrence may be extended backwards, with a(-1) = 1. - S. I. Ben-Abraham, Apr 01 2013
a(n) = 1 - A035263(n-1). - Reinhard Zumkeller, Aug 16 2006
Dirichlet g.f.: zeta(s)/(1+2^s). - Ralf Stephan, Jun 17 2007
Let T(x) be the g.f., then T(x) + T(x^2) = x^2/(1-x^2). - Joerg Arndt, May 11 2010
Let 2^k||n+1. Then a(n)=1 if k is odd, a(n)=0 if k is even. - Vladimir Shevelev, Aug 25 2010
a(n) = A007814(n+1) mod 2. - Robert G. Wilson v, Jan 18 2012
a((2*n+1)*2^p-1) = p mod 2, p >= 0 and n >= 0. - Johannes W. Meijer, Feb 02 2013
a(n) = A056832(n+1) - 1. - Reinhard Zumkeller, Jul 29 2014
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/3. = Amiram Eldar, Sep 18 2022

Extensions

Corrected by Jeremy Gardiner, Dec 12 2004
More terms from Robert G. Wilson v, Feb 26 2005

A005536 a(0) = 0; thereafter a(2n) = n - a(n) - a(n-1), a(2n+1) = n - 2a(n) + 1.

Original entry on oeis.org

0, 1, 0, 0, 1, 3, 3, 4, 3, 3, 1, 0, 0, 1, 0, 0, 1, 3, 3, 4, 6, 9, 10, 12, 12, 13, 12, 12, 13, 15, 15, 16, 15, 15, 13, 12, 12, 13, 12, 12, 10, 9, 6, 4, 3, 3, 1, 0, 0, 1, 0, 0, 1, 3, 3, 4, 3, 3, 1, 0, 0, 1, 0, 0, 1, 3, 3, 4, 6, 9, 10, 12, 12, 13, 12, 12, 13, 15, 15, 16, 18, 21, 22, 24, 27, 31, 33
Offset: 0

Views

Author

Keywords

Comments

A "Von Koch" sequence generated by the first Feigenbaum symbolic sequence.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. G. Stanton, W. L. Kocay and P. H. Dirksen, Computation of a combinatorial function, pp. 569-578 of C. J. Nash-Williams and J. Sheehan, editors, Proceedings of the Fifth British Combinatorial Conference 1975. Utilitas Math., Winnipeg, 1976.

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[n == 0, 0, hn = Floor[n/2]; If[OddQ[n], hn - 2 a[hn] + 1, hn - a[hn] - a[hn - 1]]]; t = Table[a[n], {n, 0, 100}] (* T. D. Noe, Mar 22 2012 *)
  • PARI
    a(n)=-n*(n-2)+3*sum(k=1,n-1,sum(i=1,k,abs(subst(Pol(binary(i+1))- Pol(binary(i)),x,1)%2))) \\ Benoit Cloitre, May 29 2003
    
  • PARI
    a(n)=polcoeff(1/(1-x)^2*sum(k=0,10, (-1)^k*x^2^k/(1+x^2^k)) +O(x^(n+1)),n)
    
  • Python
    from sympy.ntheory import digits
    def A005536(n): return sum(sum((0,1,-1,0)[i] for i in digits(m,4)[1:]) for m in range(n+1)) # Chai Wah Wu, Jul 19 2024

Formula

Partial sums of A065359. a(n) = Sum_{i=0..n} Sum_{k=0..i} (-1)^k*(floor(i/2^k) - 2*floor(i/2^(k+1))). - Benoit Cloitre, Mar 28 2004
G.f.: (1/(1-x)^2) * Sum_{k>=0} (-1)^k*x^2^k/(1 + x^2^k). - Ralf Stephan, Apr 27 2003
a(n) = -n*(n-2) + 3*Sum_{k=1..n-1} Sum_{i=1..k} A035263(i+1), where A035263 is the first Feigenbaum symbolic sequence. - Benoit Cloitre, May 29 2003

Extensions

More terms and better description from Ralf Stephan, Sep 13 2003
a(0)=0 added to data and offset changed by N. J. A. Sloane, Jun 16 2021 at the suggestion of Georg Fischer.

A073504 A possible basis for finite fractal sequences: let u(1) = 1, u(2) = n, u(k) = floor(u(k-1)/2) + floor(u(k-2)/2); then a(n) = lim_{k->infinity} u(k).

Original entry on oeis.org

0, 0, 0, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 8, 8, 10, 10, 10, 10, 12, 12, 12, 12, 14, 14, 14, 14, 16, 16, 18, 18, 20, 20, 20, 20, 22, 22, 22, 22, 24, 24, 24, 24, 26, 26, 28, 28, 30, 30, 30, 30, 32, 32, 34, 34, 36, 36, 36, 36, 38, 38, 40, 40, 42, 42, 42, 42, 44, 44, 44, 44, 46, 46, 46
Offset: 1

Views

Author

Benoit Cloitre and Boris Gourevitch (boris(AT)pi314.net), Aug 16 2002

Keywords

Comments

The minimum number k(n) of iterations in order to have u(k(n)) = a(n) is asymptotic to log(n)/2. Let m be any fixed positive integer and let Fr(m,n) = 3*Sum_{k = 1..n} a(k) - n^2 + m*n; then Fr(m,n) is a fractal generator function, i.e., there is an integer B(m) such that the graph for Fr(n,m) presents same fractal aspects for 1 <= n <= B(m). B(m) depends on the parity of m. B(2*p+1) = (5/3)*(4^p-1); B(2*p) = (2/3)*(4^p-1). [Formula for Fr(m,n) corrected by Petros Hadjicostas, Oct 21 2019 using the PARI program below.]

Crossrefs

Cf. A073059 and A071992 (curiously A071992 presents the same fractal aspects as Fr(n, m)).

Programs

  • PARI
    for(n=1, taille, u1=1; u2=n; while((u2!=u1)||((u2%2) == 1), u3=u2; u2=floor(u2/2)+floor(u1/2); u1=u3; ); b[n]=u2; ) fr(m, k)=(3*sum(i=1, k, b[i]))-k^2+m*k; bound(m)=if((m%2) == 1, p=(m-1)/2; 5/3*(4^p-1), 2/3*(4^(m/2)-1)); m=5; fractal=vector(bound(m)); for(i=1, bound(m), fractal[i]=fr(m, i); ); Mm=vecmax(fractal) indices=vector(bound(m)); for(i=1, bound(m), indices[i]=i); myStr=plothrawexport("svg",indices,fractal,1);write("myPlot.svg",myStr); \\ To generate graphs

Formula

a(n) is asymptotic to 2*n/3.
Showing 1-3 of 3 results.