cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A073247 Squarefree numbers k such that k-1 and k+1 are not squarefree.

Original entry on oeis.org

17, 19, 26, 51, 53, 55, 89, 91, 97, 127, 149, 151, 161, 163, 170, 197, 199, 233, 235, 241, 249, 251, 269, 271, 293, 295, 305, 307, 337, 339, 341, 349, 362, 377, 379, 413, 415, 449, 451, 485, 487, 489, 491, 521, 523, 530, 551, 557, 559, 577, 579, 593, 595
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2002

Keywords

Comments

Probably 11*n < a(n) < 12*n for n > 189. - Charles R Greathouse IV, Nov 05 2017
The asymptotic density of this sequence is 1/zeta(2) - 2 * Product_{p prime} (1 - 2/p^2) + Product_{p prime} (1 - 3/p^2) = A059956 - 2*A065474 + A206256 = 0.088145884881346585838... . - Amiram Eldar, Aug 30 2024

Crossrefs

Cf. A268331, A268332, A268333, A268334 (squarefree numbers isolated by more than 2, 3, etc.).

Programs

  • Maple
    sf:= select(numtheory:-issqrfree,[$1..1000]):
    map(t -> `if`(sf[t-1]=sf[t]-1 or sf[t+1]=sf[t]+1,NULL,sf[t]), [$2..nops(sf)-1]); # Robert Israel, Feb 01 2016
  • Mathematica
    Reap[For[n = 0, n <= 1000, n++, If[SquareFreeQ[n] && !SquareFreeQ[n-1] && !SquareFreeQ[n+1], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 26 2019 *)
  • PARI
    is(n)=!issquarefree(n-1) && issquarefree(n) && !issquarefree(n+1) \\ Charles R Greathouse IV, Nov 05 2017
    
  • PARI
    list(lim)=my(v=List(),l1,l2); forfactored(k=9,lim\1+1, if(!issquarefree(k) && !issquarefree(l2) && issquarefree(l1), listput(v,l1[1])); l2=l1; l1=k); Vec(v) \\ Charles R Greathouse IV, Nov 27 2024

A073250 Nonprime squarefree numbers n such that n+1 is also squarefree and nonprime, but not n-1 and n+2.

Original entry on oeis.org

14, 21, 38, 57, 65, 69, 77, 105, 110, 114, 118, 122, 129, 133, 145, 154, 158, 165, 177, 182, 194, 205, 209, 221, 230, 237, 246, 258, 273, 290, 298, 309, 318, 326, 329, 334, 345, 354, 357, 365, 370, 381, 385, 390, 398, 402, 406, 410, 417, 426, 429, 434, 437
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2002

Keywords

Crossrefs

Programs

  • Mathematica
    tQ[n_]:=!PrimeQ[n+1]&&SquareFreeQ[n+1]&&(PrimeQ[n-1]||!SquareFreeQ[n-1])&&(PrimeQ[n+2]||!SquareFreeQ[n+2])
    Select[Select[Complement[Range[500],Prime[Range[PrimePi[500]]]],SquareFreeQ],tQ]  (* Harvey P. Dale, Feb 14 2011 *)
    SequencePosition[Table[If[SquareFreeQ[n]&&!PrimeQ[n],1,0],{n,500}],{0,1,1,0}][[;;,1]]+1 (* Harvey P. Dale, Feb 27 2023 *)

A073251 Numbers k such that k, k+1 and k+2 are nonprime and squarefree.

Original entry on oeis.org

33, 85, 93, 141, 185, 201, 213, 217, 253, 265, 285, 301, 321, 393, 445, 453, 469, 481, 517, 533, 553, 581, 589, 609, 633, 669, 697, 705, 713, 753, 777, 789, 793, 805, 813, 869, 893, 897, 901, 913, 921, 933, 957, 985, 993, 1001, 1005, 1041, 1045, 1065, 1113
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2002

Keywords

Comments

k-1 and k+3 are not squarefree. Proof: k is odd, otherwise k or k+2 would be divisible by 4. Thus k+1 is even and not divisible by 4, hence k-1 and k+3 are divisible by 4.

Crossrefs

Programs

  • Mathematica
    f[upto_]:=Module[{pp=PrimePi[upto],n},lst=Partition[Complement[Range[upto], Prime[Range[pp]]],3,1];Transpose[Select[lst,And@@SquareFreeQ/@#&]][[1]]]; f[1200] (* Harvey P. Dale, Mar 21 2011 *)
  • PARI
    isok1(k) = !isprime(k) && issquarefree(k); \\ A000469
    isok(k) = isok1(k) && isok1(k+1) && isok1(k+2); \\ Michel Marcus, Mar 25 2021

Extensions

Edited by Klaus Brockhaus, Aug 07 2006
Showing 1-3 of 3 results.