A073325 a(n) = least k > 0 such that prime(k) == n (mod k).
1, 2, 3, 4, 75, 9, 79, 18, 17, 10, 19, 20, 91, 22, 23, 41, 83, 24, 16049, 43, 2711, 94, 25, 26, 95, 198, 449, 452, 99, 50, 451, 48, 453, 1072, 447, 54, 16043, 55, 2719, 56, 459, 57, 101, 472, 100371, 62, 105, 102, 103, 104, 467, 110, 107, 65, 109, 63, 115, 118, 117
Offset: 1
Keywords
Examples
a(4) = 75 as prime(75) = 379 == 4 (mod 75). a(44) = 100371 since prime(100371) = 1304867 == 44 (mod 100371) and prime(k) <> 44 (mod k) for k < 100371.
Links
- Zak Seidov, Table of n, a(n) for n = 1..301
Programs
-
Mathematica
nn = 60; f[x_] := Mod[Prime[x], x]; t = Table[0, {nn}]; k = 0; While[Times @@ t == 0, k++; n = f[k]; If[n <= nn && t[[n]] == 0, t[[n]] = k]]; Join[{1}, t] lk[n_]:=Module[{k=1},While[Mod[Prime[k],k]!=n,k++];k]; Array[lk,60,0] (* Harvey P. Dale, Nov 29 2013 *)
-
PARI
stop=110000; for(n=0,59,k=1; while(k
-
Python
from sympy import prime, nextprime def A073325(n): p, m = prime(n), n while p%m != n-1: p = nextprime(p) m += 1 return m # Chai Wah Wu, Mar 18 2023
Extensions
Definition revised by N. J. A. Sloane, Aug 12 2009
Comments