cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073337 Primes of the form 4*k^2 - 10*k + 7 with k positive.

Original entry on oeis.org

3, 13, 31, 241, 307, 463, 757, 1123, 1723, 3307, 3541, 4831, 5113, 5701, 6007, 8011, 9901, 10303, 11131, 12433, 13807, 14281, 17293, 20023, 20593, 21757, 23563, 24181, 26083, 28057, 30103, 35911, 41413, 43891, 46441, 53593, 60271, 78121, 82657, 86143, 95791, 108571, 123553, 127807, 136531, 145543, 147073, 156421
Offset: 1

Views

Author

Zak Seidov, Aug 25 2002

Keywords

Comments

Primes of the form k^2 + k + 1 with k odd and positive. - Peter Munn, Jan 27 2018
Primes of the form A000217(2*k) + A000217(2*k+2). - J. M. Bergot, May 09 2018

Examples

			3 is a term because for k=2, 4*k^2 - 10*k + 7 = 3 a prime.
7 is not a term because 7 can only be obtained with k=0 or k=5/2.
		

Crossrefs

Programs

  • GAP
    Filtered(List([2..300],n->4*n^2-10*n+7),IsPrime); # Muniru A Asiru, Apr 15 2018
    
  • Magma
    [a: n in [1..400] | IsPrime(a) where a is 4*n^2 - 10*n + 7]; // Vincenzo Librandi, Dec 23 2019
  • Maple
    select(isprime, [seq(4*n^2-10*n+7 ,n=2..300)]); # Muniru A Asiru, Apr 15 2018
  • Mathematica
    Select[Table[4 n^2 - 10 n + 7, {n, 1, 200}], PrimeQ] (* Vincenzo Librandi, Dec 23 2019 *)
  • PARI
    select(isprime,vector(300,k,4*k^2 - 10*k + 7)) \\ Joerg Arndt, Feb 28 2018
    

Formula

a(n) = A054554(A073338(n)). - Elmo R. Oliveira, Apr 20 2025

Extensions

Edited by Dean Hickerson, Aug 28 2002
a(1)=7 inserted and typo in Mathematica code corrected by Vincenzo Librandi, Dec 09 2011
Incorrect term 7 removed by Joerg Arndt, Feb 28 2018