A073337 Primes of the form 4*k^2 - 10*k + 7 with k positive.
3, 13, 31, 241, 307, 463, 757, 1123, 1723, 3307, 3541, 4831, 5113, 5701, 6007, 8011, 9901, 10303, 11131, 12433, 13807, 14281, 17293, 20023, 20593, 21757, 23563, 24181, 26083, 28057, 30103, 35911, 41413, 43891, 46441, 53593, 60271, 78121, 82657, 86143, 95791, 108571, 123553, 127807, 136531, 145543, 147073, 156421
Offset: 1
Examples
3 is a term because for k=2, 4*k^2 - 10*k + 7 = 3 a prime. 7 is not a term because 7 can only be obtained with k=0 or k=5/2.
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..5000
Programs
-
GAP
Filtered(List([2..300],n->4*n^2-10*n+7),IsPrime); # Muniru A Asiru, Apr 15 2018
-
Magma
[a: n in [1..400] | IsPrime(a) where a is 4*n^2 - 10*n + 7]; // Vincenzo Librandi, Dec 23 2019
-
Maple
select(isprime, [seq(4*n^2-10*n+7 ,n=2..300)]); # Muniru A Asiru, Apr 15 2018
-
Mathematica
Select[Table[4 n^2 - 10 n + 7, {n, 1, 200}], PrimeQ] (* Vincenzo Librandi, Dec 23 2019 *)
-
PARI
select(isprime,vector(300,k,4*k^2 - 10*k + 7)) \\ Joerg Arndt, Feb 28 2018
Formula
Extensions
Edited by Dean Hickerson, Aug 28 2002
a(1)=7 inserted and typo in Mathematica code corrected by Vincenzo Librandi, Dec 09 2011
Incorrect term 7 removed by Joerg Arndt, Feb 28 2018
Comments