A073364 Number of permutations p of (1,2,3,...,n) such that k+p(k) is prime for 1<=k<=n.
1, 1, 1, 4, 1, 9, 4, 36, 36, 676, 400, 9216, 3600, 44100, 36100, 1223236, 583696, 14130081, 5461569, 158180929, 96275344, 5486661184, 2454013444, 179677645456, 108938283364, 5446753133584, 4551557699844, 280114147765321, 125264064932449, 9967796169000201
Offset: 1
Keywords
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..50
- Paul Bradley, Prime Number Sums, arXiv:1809.01012 [math.GR], 2018.
- Zhi-Wei Sun, On permutations of {1, ..., n} and related topics, arXiv:1811.10503 [math.CO], 2018.
Programs
-
Haskell
a073364 n = length $ filter (all isprime) $ map (zipWith (+) [1..n]) (permutations [1..n]) where isprime n = a010051 n == 1 -- cf. A010051 -- Reinhard Zumkeller, Mar 19 2011
-
Mathematica
am[n_] := Permanent[Array[Boole[PrimeQ[2 #1 + 2 #2 - 1]]&, {n, n}]]; ap[n_] := Permanent[Array[Boole[PrimeQ[2 #1 + 2 #2 + 1]]&, {n, n}]]; a[n_] := If[n == 1, 1, If[EvenQ[n], am[n/2]^2, ap[(n-1)/2]^2]]; Array[a, 28] (* Jean-François Alcover, Nov 03 2018 *)
-
PARI
a(n)=sum(k=1,n!,n==sum(i=1,n,isprime(i+component(numtoperm(n,k),i))))
-
PARI
a(n)={matpermanent(matrix(n,n,i,j,isprime(i + j)))} \\ Andrew Howroyd, Nov 03 2018
Extensions
a(10) from Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 14 2004
a(11) from Rick L. Shepherd, Mar 17 2004
a(12)-a(17) from John W. Layman, Jul 21 2004
More terms from T. D. Noe, Oct 16 2007
Comments