A073371 Convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n >= 0, with itself.
1, 2, 7, 16, 41, 94, 219, 492, 1101, 2426, 5311, 11528, 24881, 53398, 114083, 242724, 514581, 1087410, 2291335, 4815680, 10097401, 21126862, 44117867, 91963996, 191384541, 397682154, 825190479, 1710033272, 3539371201, 7317351686
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Wieb Bosma, Signed bits and fast exponentiation, J. Th. Nombres de Bordeaux, 13 no. 1 (2001), p. 27-41.
- OEIS Wiki, Autosequence
Programs
-
Magma
[((5+3*n)*2^(n+2) + (-1)^n*(7+3*n))/27: n in [0..40]]; // G. C. Greubel, Sep 28 2022
-
Mathematica
Table[((6n+4)*2^n + (-1)^(n-1)(3n+4))/27, {n, 100}] (* Artur Jasinski, Feb 09 2007 *)
-
PARI
a(n) = if(n<-3, 0, ((5+3*n)*2^(n+2)+(7+3*n)*(-1)^n)/27)
-
SageMath
def A073371(n): return ((5+3*n)*2^(n+2) + (-1)^n*(7+3*n))/27 [A073371(n) for n in range(40)] # G. C. Greubel, Sep 28 2022
Formula
a(n) = Sum_{k=0..n} b(k) * b(n-k), where b(k) = A001045(k+1).
a(n) = Sum_{k=0..floor(n/2)} (n-k+1) * binomial(n-k, k) * 2^k.
a(n) = ((n+1)*U(n+1) + 4*(n+2)*U(n))/9 with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1 - (1+2*x)*x)^2.
G.f.: 1/((1+x)*(1-2*x))^2.
a(n) = ((5+3*n)*2^(n+2) + (7+3*n)*(-1)^n)/27.
a(n) = ((6*n+4)*2^(n) + (-1)^(n-1)*(3*n+4))/27. - Artur Jasinski, Feb 09 2007
E.g.f.: (1/27)*(4*(5+6*x)*exp(2*x) + (7-3*x)*exp(-x)). - G. C. Greubel, Sep 28 2022
Extensions
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007
Comments