cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073371 Convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n >= 0, with itself.

Original entry on oeis.org

1, 2, 7, 16, 41, 94, 219, 492, 1101, 2426, 5311, 11528, 24881, 53398, 114083, 242724, 514581, 1087410, 2291335, 4815680, 10097401, 21126862, 44117867, 91963996, 191384541, 397682154, 825190479, 1710033272, 3539371201, 7317351686
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

PSumSIGN transform of A045883(n-1). - Michael Somos, Jul 10 2003
Numbers of the form ((6*m+4)*2^m + (-1)^(m-1)*(3*m+4))/27. - Artur Jasinski, Feb 09 2007
With [0, 0, 0] prepended, this is an "autosequence" of the first kind, whose companion is [0, 0, 2, 3, 12, 25, 66, ...], that is A099429. - Jean-François Alcover, Jul 10 2022

Crossrefs

Second (m=1) column of triangle A073370.

Programs

  • Magma
    [((5+3*n)*2^(n+2) + (-1)^n*(7+3*n))/27: n in [0..40]]; // G. C. Greubel, Sep 28 2022
    
  • Mathematica
    Table[((6n+4)*2^n + (-1)^(n-1)(3n+4))/27, {n, 100}] (* Artur Jasinski, Feb 09 2007 *)
  • PARI
    a(n) = if(n<-3, 0, ((5+3*n)*2^(n+2)+(7+3*n)*(-1)^n)/27)
    
  • SageMath
    def A073371(n): return ((5+3*n)*2^(n+2) + (-1)^n*(7+3*n))/27
    [A073371(n) for n in range(40)] # G. C. Greubel, Sep 28 2022

Formula

a(n) = Sum_{k=0..n} b(k) * b(n-k), where b(k) = A001045(k+1).
a(n) = Sum_{k=0..floor(n/2)} (n-k+1) * binomial(n-k, k) * 2^k.
a(n) = ((n+1)*U(n+1) + 4*(n+2)*U(n))/9 with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1 - (1+2*x)*x)^2.
G.f.: 1/((1+x)*(1-2*x))^2.
a(n) = ((5+3*n)*2^(n+2) + (7+3*n)*(-1)^n)/27.
a(n) = ((6*n+4)*2^(n) + (-1)^(n-1)*(3*n+4))/27. - Artur Jasinski, Feb 09 2007
E.g.f.: (1/27)*(4*(5+6*x)*exp(2*x) + (7-3*x)*exp(-x)). - G. C. Greubel, Sep 28 2022

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007